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ABSTRACT 

Real-time hybrid simulation (RTHS) has demonstrated certain advantages over conventional 

large-scale testing. In an RTHS, the system that is under study is partitioned into a numerical and 

a physical substructure, where the numerical part is comprised of those elements that are easier to 

model mathematically, while the physical part consists of those that present a complex behavior 

difficult to capture in a numerical model. The most complex part of this study is the isolation 

system, a technology used to protect structures against earthquakes by modifying how they 

respond to ground motions. Unbonded Fiber Reinforced Elastomeric Isolators (UFREIs) are 

devices that can accomplish this task and have gained attention in recent years because of their 

modest but valuable features that make them suitable for implementation in low-rise buildings and 

in developing countries because of their low cost. Our end goal for this work is to enable the testing 

of scaled versions of these elastomeric isolators to understand their behavior under shear tests and 

realistic loading.  

A testing instrument was designed and constructed to apply a uniaxial compressive force up 

to 22kN and a shear force of 8kN simultaneously to the specimens. A testing program was 

conducted where four primary sources of signal distortion were identified as caused by the servo-

hydraulic system. From these results, a mechanics-based model was developed to understand 

better the dynamics that the sliding table can introduce to the measured signals accounting for 

inertial and dissipative forces. Two Bouc-Wen models were implemented to simulate the behavior 

of the UFREIs. The first only accounts for the hysteretic behavior of the isolator, and the second 

accounts for the additional nonlinearities found in the isolator’s behavior. These models were 

assembled in a virtual RTHS which is available to users interested in learning the applications of 

RTHS of a base-isolated structure with a nonlinear component. 

An RTHS experiment was conducted in the IISL where the control system comprised a delay 

compensator and a proportional-integral controller, which exhibited a good tracking performance 

with minimal delay and low RMSE. However, it can increase the distortion of the oil-column 

resonance in the measured signals. The simulation captures the behavior of the isolated structure 

for small displacements. However, it underestimates the displacement of the full-scale specimen 

for large displacements. The RTHS showed a better approximation of the displacement of the full-

scale structure than the theoretical behavior approximated by the Bouc-Wen models. 
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 INTRODUCTION 

Hybrid simulations performed in real-time has shown to offer certain advantages over 

conventional large-scale testing. In an RTHS, the system that is under study is broken into a 

numerical substructure and a physical substructure, where the numerical part is comprised of those 

elements that are easier to be modeled mathematically, while the physical part is comprised of 

those elements that present a complex behavior difficult to capture in a numerical model (Wang, 

Wang, Jin, Chi, & Zhang, 2011). Some of the advantages that this testing technology provides 

include being cost-effective since large resources are typically required for large-scale testing. Its 

versatility is a major advantage since both numerical and physical substructures can be modified 

with relative ease to test new configurations or modifications to the specimens. RTHS also allows 

capturing rate effects, inertial effects, and loading the specimens at rates equal to the generated 

velocities and accelerations during the tests. Also, it allows to perform tests at speeds faster than 

real-time if specimens of reduced size are tested since scaling laws need to be considered, 

especially those related to time (Schellenberg, Becker, & Mahin, 2017). 

This work adopts a particular type of RTHS called hybrid shake table testing (Horiuchi, 

Inoue, & Konno, 2000). The same concepts from an RTHS are applied to a shake table, and in the 

case of a non-destructive test, the less understood portion of a system could be tested 

experimentally against different numerical substructures (Schellenberg, Becker, & Mahin, 2017). 

The less understood part in this study is the isolation system, which can comprise active damping 

technologies such as magnetorheological dampers (Rabiee & Chae, 2022) and hydraulic actuators 

(Asai, Chang, & Spencer, 2015); or passive systems such as triple friction pendulum bearings 

(Scheaua, 2020), which show a high loading rate dependency; bonded elastomeric isolators, which 

presents material nonlinearities; or unbonded rubber isolators which introduces a new geometric 

nonlinearity due to the variation in the effective area in contact during its deformation due to lateral 

displacements. 

Since its development, researchers on RTHS have dedicated their efforts to counteract the 

time delay inherently present in these simulations and to generate integration routines that are well-

suited for real-time applications (Chen & Ricles, 2008; Huang, Guo, Chen, & Chen, 2018). Delay 

compensation methods are required to correct the phase difference between the input and the 

output signals and that could be introduced by a the transfer, control or data acquisition systems 
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(Horiuchi T. , Inoue, Konno, & Namita, 1999). For a transfer system with a sliding table or similar, 

the control and correction of errors is more difficult because of the payload placed on the shake 

table during the experiment and more frictional resistance due to the railing system. Therefore, it 

is more difficult for these setups to achieve a good tracking of the inputs without any delay. 

For slow loading rates, it is necessary that physical substructure do not present any load-

rate-dependent behavior that are not compensated in the computational portion of the tests. The 

motion of the actuator should also be uninterrupted to avoid developing any static frictional 

resistance between the carriages and the rails and between the actuator rod and seals (Schellenberg, 

Becker, & Mahin, 2017). 

For rapid loading rates, it is important that the inertial forces generated both from the test 

specimen and the transfer system, which is in motion during the RTHS and is not part of the 

physical test specimen, are accurately accounted for during the design of the physical part of the 

experiment. This way the measurements from the load cells are free from these dynamics and can 

represent the true response of the test specimen. If they are not accounted for, they will need to be 

compensated in the computational portion of the simulation with filters or estimators. Some of 

these distortions could be due to the inertial forces from a sliding table that holds the specimens or 

force feedback from large dynamic actuators, especially if large and heavy setups are involved 

(Schellenberg, Becker, & Mahin, 2017).  

Major research efforts have been devoted to implement different configurations of the 

sliding seismic tables. Some of these, place a sliding table on top of a seismic isolation system 

along with a vertical force to simulate the effect of a seismic load and the compressive load of the 

building, respectively. Some have placed a shake table on top of a physical substructure to simulate 

numerically the top portion of a building and study its effect on its physical portion below 

(Schellenberg, Becker, & Mahin, 2017). Others have combined a sliding table with dynamic 

actuators to simulate the interaction between a physical portion of a building with numerical 

substructures placed above and below the specimen (Eem, Jung, & Koo, 2013). 

A seismic isolation bearing is a protective device that is typically installed between the 

building structure and foundation, although it can also be installed at mid-height or in other parts 

of the structure. This isolation is done to suppress the propagation of high-frequency seismic waves 

to the building, this occurs since they increase the flexibility of the structure, therefore, increasing 

its natural period (Cheng, 2008; Warn & Ryan, 2012). These isolators aid in seismic energy 
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dissipation by concentrating the relative displacements (between the ground motion and the 

response of the structure on top of the isolation layer) in the isolation system, thus enhancing the 

dynamic behavior of the structure and aiding in reducing the relative deformations and damage of 

structural elements. (Al-Anany, Moustafa, & Tait, 2018).  

Mid-level isolation has been implemented over the last decade thanks to its potential in 

reducing structural demands and construction costs, and the flexibility that it provides to buildings 

that have transitions in them, such as multi-use buildings or when new stories are added to an 

existing structure without increasing seismic load. Studies of midlevel isolation focus on the 

interaction between the superstructure, the substructure, and the isolation system. Therefore, 

testing of multiple configurations of these structures it would be ideal to understand these 

interactions (Schellenberg, Becker, & Mahin, 2017; Zhang, Phillips, Taniguchi, Ikenaga, & Ikago, 

2017). 

Base isolation of a structure is a technology that is commonly used to protect it against 

earthquakes by modifying the way it vibrates or responds to a ground motion (Mitu, Sireteanu, & 

Daniel, 2010). One type of device that is used to achieve this base isolation are elastomeric 

isolators. However, before they are ready to be installed under a building, they need to undergo a 

series of testing to make sure that their design is appropriate for the building and that it effectively 

modifies its response to ground motions in the way that it is expected. 

Unbonded Fiber Reinforced Elastomeric Isolators (UFREIs) has gained attention in recent 

years since they possess modest but valuable features that make them suitable for implementation 

in low-rise buildings and developing countries due to their low cost (Habieb, Milani, Tavio, & 

Milani, 2017) when compared with other types of isolators, such as bonded isolators, lead-core 

isolators, or steel-reinforced rubber isolators (Toopchi-Nezhad, Tait, & Drysdale, 2009). Some of 

their key advantages are their lower manufacturing cost and their simple implementation on the 

construction site. One of the reasons behind the lower cost of these isolators is the substitution of 

the steel layers for carbon or polyester fibers. Much research attention is now being focused on the 

fabrication of these isolators with different types of rubber or rubber-like materials, such as 

recycled rubber from tires or natural rubber (Calabrese, Spizzuoco, Serino, Della Corte, & 

Maddaloni, 2015). One of the features that this work focuses on is their unbonded nature since 

they are not fixed either to the superstructure or foundation. This feature introduces a new contact 

nonlinearity that the bonded case lack, hence the interest in running this type of isolator through a 
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real-time hybrid simulation which makes it possible to try different types of superstructures and 

test different isolators in a more versatile way. This could enable researchers to further their 

investigations into these types of isolation technologies, reducing the cost and resources. 

These unbonded isolators could be implemented on low-rise masonry buildings since they 

could increase the period of the structure and allow for moderate horizontal deformations during 

an earthquake, while reducing the relative deformation between structural members and damage 

to non-structural elements in the superstructure. However, they are not suited for high-rise 

construction due to the large deformations generated in these scenarios by the superstructure alone, 

which can induce other structural issues such as moat impact for base isolated buildings. 

One possibility to test the behavior of these isolators, under similar conditions that they 

would experience when they are placed under a building; is to build a real or, most likely, scaled 

version of the building and install an isolation layer under the structure, and send a ground motion 

signal to the shake table and capture the isolator response. Losanno et al, built a single-story frame 

on a shake table and performed a series of tests to understand the behavior of the isolators (Losanno, 

Sierra, Spizzuoco, Marulanda, & Thomson, 2020). This type of testing, however, is time-

consuming since it involves a lot of planning, preparation, and construction, and it is also costly 

since we would need a facility that big and a lot of materials to build that experimental setup. If 

we test with standard methods, it becomes impractical and expensive. That’s where hybrid 

simulation becomes an efficient solution for this task. 

Since we are only interested in the behavior of the isolators, our objective in this scenario 

would be to build a smaller test setup, namely a transfer system, capable of applying on the isolator 

the same loading that it would experience under the structure, that way the isolator would respond 

accordingly. Here we wouldn’t need to build a full-scale test specimen to have a good 

approximation of the behavior of the isolator. The dynamic behavior of the frame could be 

approximated by mass-damper-spring models with the same properties of a full-scale specimen. 

One of the first steps taken to create this hybrid simulation is to define a numerical, a physical 

substructure, and a transfer system. In this case, the entire frame can become the numerical 

substructure, which could be modeled in software such as OpenSees, MATLAB, Simulink, Python, 

etc. The test specimen will become the physical substructure. And the transfer system should be 

designed to apply the same type of loading to the isolator as if it was being loaded by the full-scale 

specimen. In the case of isolator bearings, the transfer system should be able to apply a constant 
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vertical load on top of the specimen that comes from the superstructure and a horizontal 

displacement to simulate the relative motion that occurs between the superstructure and its 

foundation. Therefore, when we impose a ground motion to the RTHS system, the numerical 

substructure is going to displace and send this displacement to the transfer system, which will 

transmit this displacement to the physical specimen, which will respond with a restoring force that 

is sent back to the numerical substructure to compute the next iteration. 

Our end goal for this complete work is to be able to test scaled versions of these elastomeric 

isolators to understand their behavior and learn the considerations when implementing a real-time 

hybrid simulation of this type. To this end a series of specific objectives are listed to meet the end 

goals, including to: 

1) Design and develop a testing instrument that allows for simultaneous shear and uniaxial 

compressive testing of elastomeric isolator prototypes. 

2) Collect data from isolator prototypes test and determine their elastic and dissipative properties 

from their hysteretic behavior. 

3) Contribute experimental data from the isolator prototypes to the RTHS community in order to 

assess the tracking control of a real-time hybrid simulation with these types of nonlinear 

specimens. 

4) Develop a real-time hybrid test that aims to emulate a full-scale physical experiment to test the 

feasibility of building a full-scale testing structure versus the advantages of an RTHS 

experiment. 

5) Construct a virtual model of the RTHS experiment to facilitate the implementation of different 

controlling systems before deploying them in the laboratory. 

6) Compare the results between a theoretical behavior of the isolators, the experimental results 

obtained in the laboratory, and the results from a full-scale testing structure. 
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 DESCRIPTION OF THE RTHS ARCHITECTURE  

This chapter is devoted to describing the architecture of the structural system being studied. 

Section 2.1 explains the assumptions adopted and the equations of motions of the numerical 

substructure. Section 2.2, explains the process of partitioning and the considerations taken to 

ensure that the partition is stable enough to be implemented in an RTHS. Section 2.3 describes the 

physical substructure and Section 2.4 describes the experimental setup constructed for this 

experiment. 

2.1 Model definition 

A case study of a planar structural frame of three stories and one bay is presented in this 

section to formulate the equations that were used in the substructuring process. A frame with 18 

degrees of freedom (DOF), as shown in Figure 2.1a, is rigidly fixed to the ground. Thus, several 

assumptions can be made to reduce the total number of degrees of freedom in the model. These 

assumptions also aid in making the substructuring process more straightforward, reducing the 

complexity of the problem, making the model easier to implement in a real-time testing scenario, 

and avoiding any instabilities that additional degrees of freedom with small inertia could introduce 

in the system. The structure is idealized as a shear building. The additional assumptions adopted 

are listed below:  

1) The motion of a 3D frame structure is analyzed as a planar frame in one direction. 

2) Masses are assumed to be lumped in the middle of the spans, discretizing the degrees 

of freedom of the structure. 

3) Beams are assumed to be infinitely rigid, relative to that of the columns, and both 

ends of the beams are attached to a rigid diaphragm, i.e., they remain horizontal 

during motion. They do not experience shortening or elongation and the connections 

between beams and columns are fixed against rotation. 

4) Columns are assumed to be axially stiff, therefore the vertical translations of all 

nodes are neglected, making the deformation of the model independent of the axial 

forces present in the columns. 
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5) Rocking motion is assumed to be much smaller than the horizontal motion due to the 

vertical-to-horizontal stiffness design ratios of the isolators (Losanno, Sierra, 

Spizzuoco, Marulanda, & Thomson, 2020). Therefore, it is neglected. 

6) The displacement of the upper face of the isolator is assumed to be equal to the 

displacement of the bottom face of the base slab, thus relative slipping at this 

interface is neglected.  

 

After applying these assumptions, a planar three-story building of 18-DOFs can be 

modeled dynamically as a three-degrees-of-freedom system as shown in Figure 2.1b. The 

equations of motion that describe the dynamics of the system are: 

 

 

𝑀1𝑢̈1 + 𝐶1(𝑢̇1 − 𝑥̇𝑔) + 𝐶2(𝑢̇1 − 𝑢̇2) + 𝐾1(𝑢1 − 𝑥𝑔) + 𝐾2(𝑢1 − 𝑢2) = 0 

𝑀2𝑢̈2 + 𝐶2(𝑢̇2 − 𝑢̇1) + 𝐶3(𝑢̇2 − 𝑢̇3) + 𝐾2(𝑢2 − 𝑢1) + 𝐾3(𝑢2 − 𝑢3) = 0 

𝑀3𝑢̈3 + 𝐶3(𝑢̇3 − 𝑢̇2) + 𝐾3(𝑢3 − 𝑢2) = 0 

(2.1) 

 

where, 𝑀𝑖, 𝐾𝑖, 𝐶𝑖 denote the mass, damping, and stiffness values for each degree of freedom (at 

each floor), respectively (Chen, Dong, Chen, & Nakata, 2020). The vectors 𝑢̈𝑖 , 𝑢̇𝑖  and 𝑢𝑖 

correspond to the absolute acceleration, absolute velocity, and absolute displacement of each story, 

respectively. The variables 𝑥̇𝑔  and 𝑥𝑔  are the ground velocity and ground displacements, 

respectively. By expressing the motion described in Equation (2.1) relative to the ground and 

arranging it into a matrix notation we get:  

 

 [𝑀]{𝑥̈𝑖} + [𝐶]{𝑥̇𝑖} + [𝐾]{𝑥𝑖} = −[𝑀]{𝐼}{𝑥̈𝑔}. (2.2) 

 

The vectors 𝑥̈𝑖, 𝑥̇𝑖 and 𝑥𝑖 correspond to the acceleration, velocity and displacement of each 

story relative to the ground, respectively. The vector 𝐼 is a column vector of ones and 𝑥̈𝑔 is the 

ground acceleration disturbance to the structure.  

The matrices in Equation (2.2) can then be arranged to include more levels above the base 

slab: 

 

[
𝑀1 0
0 𝑀𝑠

] {
𝑥̈1
𝑥̈𝑠
} + [

𝐶1 + {𝐼}
𝑇[𝐶𝑠]{𝐼} −{𝐼}𝑇[𝐶𝑠]

−[𝐶𝑠]{𝐼} 𝐶𝑠
] {
𝑥̇1
𝑥̇𝑠
}

+ [
𝐾1 + {𝐼}

𝑇[𝐾𝑠]{𝐼} −{𝐼}𝑇[𝐾𝑠]

−[𝐾𝑠]{𝐼} 𝐾𝑠
] {
𝑥1
𝑥𝑠
} = − [

𝑀1 0
0 𝑀𝑠

] {𝐼} ∙ 𝑥̈𝑔 

(2.3) 



 

 

21 

where:  

 𝑀𝑠 = [
𝑀2 0
0 𝑀3

],  𝐶𝑠 = [
𝐶2 + 𝐶3 −𝐶3
−𝐶3 𝐶3

]  and  𝐾𝑠 = [
𝐾2 + 𝐾3 −𝐾3
−𝐾3 𝐾3

]. (2.4) 

 

The subscript [. . . ]1 indicates the DOF that corresponds to the base slab and the subscript 

[. . . ]𝑠 indicates the parameters that correspond to the superstructure above the base slab as if it 

were rigidly fixed to the ground, as shown in Equation (2.4). 

 

 

Figure 2.1. a) 18-DOFs planar three-story building (left), b) Lumped mass system (center), and 

c) 3-DOFs model (right). 

 

For the present experiment, a 2-DOF system was chosen for the reference model. Therefore, 

the superstructure will be a single-degree-of-freedom spring-mass-damper system. Hence, the 

matrices in Equation (2.4) reduce to: 𝑀𝑠 = 𝑀2 , 𝐶𝑠 = 𝐶2 , and  𝐾𝑠 = 𝐾2 . The values for these 

parameters are listed in Table 2.1 and correspond to the ones identified experimentally for the 

same type of frame built at the University of Naples Federico II (Magliulo, et al., 2012). The 

parameter 𝐶2 is assumed to be equal to: 2𝜁𝜔𝑀2, where 𝜁 is the damping ratio identified for the 

natural vibration mode of the superstructure and equal to 1%; 𝜔 is the natural frequency in radians 

per second, when considering the superstructure as a fixed-base structure; and 𝑀2 is the mass of 

the top slab of the structure. A modal analysis was also performed to the superstructure system and 

its natural frequency was found to be 3.81 𝐻𝑧. 

 

𝑢3
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Table 2.1. Values for the dynamic parameters of the SDOF. 

𝑴𝟏(𝒌𝒈) 𝑴𝟐(𝒌𝒈) 𝑲𝟐(𝑵/𝒎) 𝑪𝟐(𝑵 ∙ 𝒔/𝒎) 𝒇𝒏(𝑯𝒛) 𝒏𝒊 (isolators) 

𝟑𝟓𝟕𝟎 4155 2.38 × 10  1.99 × 103 3.81 4 

 

 

Figure 2.2. a) Schematic of the experimental 3D frame (left) and b) 2-DOF reference model 

considered for the hybrid simulation (right). 

 

2.1.1 Numerical substructuring 

The next step is the substructuring process, where we will classify each component of 

Equation (2.3) into three components: numerical, transfer system, and physical or experimental. 

An RTHS is developed from the assumption that the mathematical formulation of the response of 

the reference model to an excitation (given by Equation (2.2) and shown in Figure 2.1c), can be 

represented as the sum of a numerical and an experimental part as shown in Equation (2.5), where 

the subscripts [. . . ]𝑛 and [. . . ]𝑒 represent a numerical and experimental component, respectively. 

It is important to note that the whole mass of the base slab will be considered as a numerical 

component, thus, there will be no experimental contribution to the inertial force of the system 

represented in these following equations: 

 

 [𝑀𝑛 +𝑀𝑒]{𝑥̈𝑖} + [𝐶𝑛 + 𝐶𝑒]{𝑥̇𝑖} + [𝐾𝑛 + 𝐾𝑒]{𝑥𝑖} = −[𝑀𝑛 +𝑀𝑒]{Γ}{𝑥̈𝑔} (2.5) 

Numerical Substructure

, 

Physical Substructure

, 

, 

, 
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Equation (2.5) simplifies into Equation (2.6), where the subscript [. . . ]𝑟  represents a 

reference model component. The experimental contribution that will act on the numerical system 

is given by 𝑓𝑒( ) and has been moved to the right-hand side of the equation.  

 

 
[𝑀𝑟]{𝑥̈𝑖} + [𝐶𝑛]{𝑥̇𝑖} + [𝐾𝑛]{𝑥𝑖} = −[𝑀𝑟]{Γ}{𝑥̈𝑔} − ([𝐾𝑒]{𝑥𝑖} + [𝐶𝑒]{𝑥̇𝑖})⏟            

𝑓𝑒(𝑡)

 
(2.6) 

 

If we compare Equation (2.6) against Figure 2.2b it is evident that the experimental 

components in our system correspond to only 𝐾1 and 𝐶1 and that the contribution of the isolation 

layer to the system is given by: 

 𝑓𝑒( ) = 𝐾1𝑥1 + 𝐶1𝑥̇1 (2.7) 

 

where, 𝐾1 and 𝐶1 are the linear elastic and dissipative force contributions from the isolation layer 

to the first degree of freedom of the system, 𝑥1. Assuming that 𝑓𝑒( ) is the contribution of just one 

isolator, we can arrange Equation (2.6) for a 2-DOF system as: 

 

 [𝑀𝑟]{𝑥̈𝑖} + [𝐶𝑛]{𝑥̇𝑖} + [𝐾𝑛]{𝑥𝑖} = −[𝑀𝑟]{Γ}{𝑥̈𝑔} − 𝑛𝑖{𝛾}𝑓𝑒( ) (2.8) 

with: 

 𝑀𝑟 = [
𝑀1 0
0 𝑀2

],  𝐶𝑛 = [
𝐶2 −𝐶2
−𝐶2 𝐶2

]  and  𝐾𝑛 = [
𝐾2 −𝐾2
−𝐾2 𝐾2

] (2.9) 

 

where, 𝑛𝑖 is the number of isolators in the isolation layer (as given in Table 2.1); Γ is an influence 

vector that describes the inertial effects of the excitation on the masses of the system, in our case, 

this is a column vector with a value of one for each row element corresponding to any mass in the 

system that develops an inertial effect due to ground acceleration; and the vector, 𝛾 is a column 

vector which elements take a value of one at the degree of freedom where the experimental 

restoring force is acting, i.e., 𝛾 = [1, 0]𝑇. 

 

The reference model can be represented in a state-space notation as: 

 
𝑧̇ = 𝐴 ∙ 𝑧 + 𝐵 ∙ 𝐹( ) 
𝑦 = 𝐶 ∙ 𝑧 + 𝐷 ∙ 𝐹( ). 

(2.10) 

 

The matrices 𝐴, 𝐵, 𝐶, and 𝐷 are given by: 



 

 

24 

 

𝐴 = [
𝕆2×2 𝕀2×2

−𝑀𝑟
−1𝐾𝑛 −𝑀𝑟

−1𝐶𝑛
] 𝐵 = [

𝕆2×1
−Γ

   𝕆2×1
 −𝑀𝑟

−1𝛾
] 

𝐶 = [

𝕀2×2 𝕆2×2
𝕆2×2

−𝑀𝑟
−1𝐾𝑛

𝕀2×2
−𝑀𝑟

−1𝐶𝑛

] 𝐷 = [
𝕆2×1
𝕆2×1
−Γ

   𝕆2×1
   𝕆2×1
−𝑀𝑟

−1𝛾
] 

(2.11) 

 

where, 𝕆𝑛×𝑚 and 𝕀𝑛×𝑛 denote a zero and identity matrices, respectively. The state vector, 𝑧, is 

defined by the position (𝑥𝑖) and velocity (𝑥̇𝑖) of the system; the output vector, 𝑦, will be comprised 

of the position (𝑥𝑖), velocity (𝑥̇𝑖), and acceleration (𝑥̈𝑖) of the system. The input vector, 𝐹( ), is 

given by the ground acceleration, 𝑥̈𝑔( ), and the experimental restoring force, 𝑓𝑒( ). Symbolically: 

 𝑧̇ = [
𝑥̇
𝑥̈
]  ,     𝑧 = [

𝑥
𝑥̇
]  ,     𝑦 = [

𝑥
𝑥̇
𝑥̈
]  ,     𝐹( ) = [

𝑥̈𝑔( )

𝑓𝑒( )
]. (2.12) 

 

The restoring force from the isolation layer in the reference model, 𝑓𝑒( ) , shows hysteretic 

behavior because of the nature of the isolator, hence, it can be modeled through multiple methods 

that exist in literature. It is important to note that this force acts instantaneously on the numerical 

structure as it would in a real-world scenario. The integration of the differential equations of the 

numerical substructure, in their state-space form, is done using an implicit extrapolation numerical 

integration algorithm (ode14x), through a Simulink model with a fixed time step of 1/4096 𝑠𝑒𝑐. 

2.2 Partitioning 

The partitioning of the system is stated implicitly in Section 2.1.1, where the numerical and 

experimental components of the system have been separated. The stability and feasibility of other 

partitioning options should be thoroughly investigated before their implementation a simulation or 

at the testing setup. In this section, we will describe the partitioned simulation model and address 

some of the considerations that were taken to ensure the stability of the partitioned system and its 

integration with the transfer system. 

2.2.1 Hybrid system definition 

In a RTHS, the restoring force will originate in the experimental substructure, i.e., the 

isolators. In our simulation, it is assumed that the response of one single isolator will be the same 

as that of all isolators in the isolation layer, as given in Equation (2.8). 



 

 

25 

After the system has been partitioned, the ground motion, 𝑥̈𝑔 , enters the numerical 

substructure as shown in Figure 2.3 and Figure 2.4, where the target (or desired) base slab 

displacement relative to the ground, 𝑥𝑛
(1)

, is computed. This relative displacement enters the 

control system where the commanded displacement, 𝑥𝑐 , is calculated to compensate for the 

inherent dynamics of the transfer system and enforce the desired numerical displacement of the 

base slab. 

 

The control plant (which is formed of the transfer system coupled with the experimental 

substructure, i.e., the isolator) reacts to the commanded displacement and the sliding table 

experiences a displacement, 𝑥𝑚, which is measured by the actuator’s integrated linear variable 

differential transformer (LVDT) transducer. In the control plant, a reaction force is also generated 

and measured by the load transducer, which is fed back to the numerical substructure as an input, 

along with the ground motion at the next integration time step to generate the subsequent desired 

displacement. The measured displacement of the sliding table is also fed back to the control system 

to calculate the commanded displacement for the next time step. 

 

 

 

Figure 2.3. Flow-diagram of the RTHS system. 
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Figure 2.4. Schematic of the RTHS system and its elements. 

 

2.2.2 Considerations for stability 

Some considerations were taken to ensure the stability of the partitioning choice, as 

described next: 

1) As mentioned in Section 2.1.1, for this partitioning case, the mass of the base slab 

will be considered as a numerical component. Therefore, the physical mass of the 

sliding table will not be included in the reference equations of motion, Equations (2.8) 

and (2.9). This means that there will be no experimental contribution to the inertial 

force of the reference structure. In the same way, the damping generated by the 

friction in the bearings of the sliding table will not be included as part of the reference 

substructure. Therefore, the experimental dissipative contribution will come only 

from the damping of the isolators and there will be no experimental dissipative 

contribution from the damping of the sliding table bearings to the reference structure. 

 

2) To ensure that [K] and [C] in Equation (2.9) are well-conditioned matrices and avoid 

any related instabilities we assume a small linear contribution given by the term: 

𝑘1𝑥1, which can be assumed as an initial stiffness that acts on the system of equations 

(2.8) in the form: 𝑛𝑖𝑘1𝑥1. The same can be assumed for a small linear damping 

contribution, 𝑛𝑖𝑐1𝑥̇1: 

Numerical Substructure

Physical
Substructure, 

Transfer System
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 𝐾𝑛 = [
𝑛𝑖𝑘1𝑥1 +𝐾2 −𝐾2

−𝐾2 𝐾2
] and 𝐶𝑛 = [

𝑛𝑖𝑐1𝑥̇1 + 𝐶2 −𝐶2
−𝐶2 𝐶2

]. (2.13) 

 

These contributions must be added as well to the right-hand side of Equation (2.8), 

specifically to the restoring force measured from the isolators. This equation will 

then become: 

 
[𝑀𝑟]{𝑥̈𝑖} + [𝐶𝑛]{𝑥̇𝑖} + [𝐾𝑛]{𝑥𝑖}

= −[𝑀𝑟]{Γ}{𝑥̈𝑔} − 𝑛𝑖{𝛾}(𝑓𝑒( ) − 𝑘1𝑥1 − 𝑐1𝑥̇1) 
(2.14) 

 

It is worth noting that since these contributions are being added on both sides of 

Equation (2.8), the actual values of coefficients 𝑘1 and 𝑐1 can be set arbitrarily as 

long as their order of magnitude is consistent with the other parameters in the system. 

In this experiment they are taken as the average stiffness and effective viscous 

damping that were found through experimental testing.  

 

3) A lag in the application of the experimental restoring force is known to cause an 

increase in the displacement of the overall system due to the effective negative 

damping it introduces (Horiuchi, Inoue, Konno, & Namita, 1999). For this reason, a 

stability analysis was done to determine the amount of lag that would make the 

partitioned system either change from a stable to an unstable state, or exceed the 

stroke limit of the sliding table, whichever case occurs first. 

For this analysis, a pure time delay was introduced between the superstructure and 

the isolation layer, as shown in Figure 2.5, and was increased until either of the 

previously discussed limits were met. This amount of delay is referred to as a critical 

time delay (Maghareh, Dyke, Rabieniaharatbar, & Prakash, 2017). 

 

 

Figure 2.5. Introduction of a fictitious delay to the partitioned system for stability analysis. 
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A ±50% variation of the mass, stiffness, and damping of the numerical substructure (from 

those shown in Table 2.1) was also introduced as an additional parameter in the analysis to 

determine the sensitivity in the critical time delay. Each parameter was varied individually, and 

the other parameters remained constant, while the amount of delay in the system was increased. 

Figure 2.6 shows the critical time delay variation as a function of 𝑀1, 𝑀2, 𝐾2 and 𝜁, respectively. 

The analysis shows that, for a system with the parameters given in Table 2.1, the critical time delay 

is 35 ms, which is greater than the experimental delay identified in the laboratory for the sliding 

table. 

 

 

 

Figure 2.6. Variation of the critical time delay as a function of 𝑀1 (top-left), 𝑀2 (top-right), 𝐾2 

(bottom-left), and 𝜁 (bottom-right). 
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Figure 2.6 shows that the system stability is affected primarily by the mass of each degree 

of freedom, such that an increase in the stiffness of the superstructure causes an increase in the 

critical time delay; and an increase in the damping ratio of the superstructure does not seem to 

have a significant effect on the critical delay of the system. The effect of the variation of 𝐾2 and 𝜁 

on the system could be attributed to the system becoming more rigid and exhibiting rigid body 

motion, which is a desirable effect in a base-isolated system. On the other hand, the variation of 

𝑀1  or 𝑀2  could drive the system to an unstable state since by increasing the masses, greater 

displacements are going to take place due to an increase in the inertial restoring forces. 

2.3 Physical substructure 

Unbonded fiber-reinforced elastomeric isolators were selected as the physical substructure 

that will form the isolation layer. This family of isolators is made from an elastomeric material and 

a material that serves as a reinforcement. In earlier years, rubber was selected as the elastomeric 

material, and thin sheets of steel formed the reinforcement. This reinforcement was necessary to 

keep the rubber from bulging radially while a compressive force was acting on it. The 

manufacturing cost of these isolators tends to be high due to the steel reinforcement and the top 

and bottom steel plates that were attached to the top and bottom faces of the isolator to transmit 

the load between the superstructures. Over the years, different types of geometry and materials 

have been tested with the objective of reducing manufacturing costs and bringing them closer to 

an application in residential and midlevel constructions. In recent years, researchers have focused 

their attention on unbonded isolators, which eliminate the need for the top and bottom plates; 

different types of fibers such as carbon, polyester, and flax fibers; and other sources for the rubber 

matrix, such as recycled rubber from discarded tires.  

The range of specimens that were part of the study can be classified into three large groups: 

unbonded carbon-fiber reinforced natural rubber isolators (NC), unbonded polyester-fiber 

reinforced natural rubber isolators (NP), and unbonded polyester fiber reinforced recycled rubber 

isolators (RP), a cross-sectional view of the carbon and polyester fiber reinforced isolators is 

shown in Figure 2.7. The polyester-fiber reinforced isolators further classify into different batches. 

The qualitative differences between these batches are given in Table 2.2 and were provided by the 

manufacturing entities. 
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Figure 2.7. Cross section of the a) carbon (left) and b) polyester (right) fiber reinforced isolators. 

 

A portion of these isolators was previously experimentally tested in Italy under bidirectional 

seismic excitation (Losanno, Sierra, Spizzuoco, Marulanda, & Thomson, 2019). The excitation 

was sent to a base-isolated one-story steel frame that was built for this purpose. The base-isolated 

frame was mounted on a sliding table and vertical and horizontal displacements, and accelerations 

were measured to obtain the forces generated during the experiment. These isolators were first 

tested under compressive, and shear loading applied simultaneously to assess their elastic and 

dissipative properties and compare them to the ones obtained from the full-scale test (Losanno, 

Sierra, Spizzuoco, Marulanda, & Thomson, 2020). 

 

Table 2.2. Subclassification of the polyester-fiber reinforced isolators. 

Type of rubber Batch label Description 

Natural 

A This batch was previously tested in Italy. 

B 

This batch had the same type of mixture of Natural 

rubber Batch A, but it had not been tested previous to 

this work. 

Recycled 

A 

Mixture containing more coarse rubber aggregate. The 

mixture was done with a good manufacturing process. 

This batch was previously tested in Italy. 

B 

This mixture had a balanced proportioning of coarse 

and fine rubber aggregates, but were created following 

a poor manufacturing process. 

C 

This third batch was manufactured with a balanced 

proportioning of coarse and fine rubber aggregates and 

with a good manufacturing process. 

Rubber: 2mm

Fiber: 0.2mm

75mm

80mm
3
3
m

m
Rubber: 2mm

Fiber: 1mm

75mm

80mm

4
4
m

m



 

 

31 

 

The testing procedure starts with the preloading of the isolators with a compressive vertical 

force of 19kN the isolator is then subjected to a displacement protocol required by ASCE 7-16 

SEC. 17.8.2.2-2.a. which is shown in Figure 2.8. The effective lateral stiffness, 𝐾ℎ, was calculated 

for each isolator based on the peak values of force and displacement values for each hysteretic 

loop, symbolically: 

  𝐾ℎ =
𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛
𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

 (2.15) 

 

here, 𝐹𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥  represents the maximum force and displacement reached in each deformation 

cycle. In the same way, 𝐹𝑚𝑖𝑛 and 𝐷𝑚𝑖𝑛 are the minimum force and displacement reached in the 

cycle. The effective viscous damping ratio is calculated as the dissipated area, 𝐸𝐷 , from each 

deformation cycle divided by the effective lateral stiffness and the maximum displacement, 

symbolically: 

  𝛽 =
𝐸𝐷

2𝜋𝐾ℎ𝐷𝑚𝑎𝑥2
 (2.16) 

 

 

Figure 2.8. ASCE 7-16 displacement protocol used for the shear tests. 

 

The batch label is added to the group label (NC, NP, RP) to form the name of the isolator, 

after the batch label a number was added at the end to keep track of each isolator that belongs to 

each group and/or batch. Figures 2.9 through 2.14 shows the hysteretic behavior of the three main 

isolator groups.  
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Figure 2.9. a) Hysteretic behavior of the carbon-fiber reinforced natural-rubber isolator (NCA1) 

(left) b) Effective lateral stiffness, 𝐾ℎ, as a function of displacement (center). c) Effective viscous 

damping, 𝛽, as a function of displacement (right). 

 

 

Figure 2.10. a) Hysteretic behavior of the polyester-fiber reinforced natural-rubber isolator batch 

A (NPA1) (left) b) Effective lateral stiffness, 𝐾ℎ, as a function of displacement (center). c) 

Effective viscous damping, 𝛽, as a function of displacement (right). 
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Figure 2.11. a) Hysteretic behavior of the polyester-fiber reinforced natural-rubber isolator 

batch B (NPB8) (left) b) Effective lateral stiffness, 𝐾ℎ, as a function of displacement (center). c) 

Effective viscous damping, 𝛽, as a function of displacement (right). 

 

 

Figure 2.12. a) Hysteretic behavior of the polyester-fiber reinforced recycled-rubber isolator 

batch A (RPA1) (left) b) Effective lateral stiffness, 𝐾ℎ, as a function of displacement (center). c) 

Effective viscous damping, 𝛽, as a function of displacement (right). 
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Figure 2.13. a) Hysteretic behavior of the polyester-fiber reinforced recycled-rubber isolator 

batch B (RPB2) (left) b) Effective lateral stiffness, 𝐾ℎ, as a function of displacement (center). 

c) Effective viscous damping, 𝛽, as a function of displacement (right). 

 

 

Figure 2.14. a) Hysteretic behavior of the polyester-fiber reinforced recycled-rubber isolator 

batch C (RPC9) (left) b) Effective lateral stiffness, 𝐾ℎ, as a function of displacement (center). c) 

Effective viscous damping, 𝛽, as a function of displacement (right). 
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Figures 2.9 through 2.14 shows that stiffness degradation was present in all hysteretic 

responses as the slope of the loops starts to decrease when the deformation increases. All isolators 

presented a softening and a hardening behavior at different intensity levels during the test. These 

effects are more noticeable in the case of the NCA isolators, presented in Figure 2.9, where a clear 

decrease in the instantaneous stiffness appears when the isolator has displaced 5 mm, followed by 

an increase when the isolator has displaced beyond 20 mm. This behavior is present also in the 

hysteretic responses of isolators NPA, NPB, and RPC, however, the decreases and increases of 

stiffness are subtler, particularly at greater amplitudes. We speculate that these softening and 

hardening behaviors produce a pinching effect near the origin, as shown in Figure 2.9 (Aloisio, 

Alaggio, Köhler, & Fragiacomo, 2020; Han, Dong, Du, Sun, & Huang, 2014; Pelliciari, et al., 

2018), this effect is still present in Figure 2.10 for the NPA isolator, but are barely visible for the 

NPB isolators in Figure 2.11. This change in behavior is attributed to some change in the rubber 

mixture or in the manufacturing process. This change in the manufacturing process made the NPB 

isolators stiffer. This increase in rigidity made it difficult for the isolator to deform under the 

horizontal load and develop softening and hardening behaviors. The same is true for the RPC 

isolators in Figure 2.14, the most evident indicator of this loss of flexibility is due the fact that the 

isolators made with recycled rubber developed higher lateral forces when compared to the NCA 

or NPA isolators. Figures 2.12 through 2.14 exemplifies this effect, isolators RPA and RPB show 

to be more rigid than the RPC isolators in which some softening and hardening is seen even in the 

largest deformation cycles. 

The variation in effective lateral stiffness of the NCA isolators is similar to that of the ones 

tested in Italy for the case of the natural rubber, which validates the implemented testing procedure. 

The isolators that were previously tested (e.g., NPA) have shown so far, an overall degradation in 

their effective horizontal stiffness, since the variation in horizontal stiffness is lower than the ones 

previously tested. The effective viscous damping obtained for all the tested isolators presented an 

increase with the lateral displacement, this being is the opposite for the isolators tested in Italy or 

for a set of aged isolators (Losanno, Sierra, Spizzuoco, Marulanda, & Thomson, 2019). 

An average lateral stiffness was obtained for the isolator NPA1 from the shear tests with a 

value of 62.29 N/mm and an effective viscous damping ratio of 15%. These values, along with the 

two DOF system presented in Section 2.1, are used to perform a modal analysis and the natural 

frequencies were calculated to be 1.79 𝐻𝑧 and 6.02 𝐻𝑧 for the first and second mode, respectively. 
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The mode shapes are shown in Figure 2.15. Although this type of analysis is not applicable to these 

types of systems, since the damping of the system is non-classical due to the significant difference 

between the damping of the structure and the damping of the isolation layer, it is a tool that gives 

an idea of the magnitude of the frequencies that can be expected from the system. 

 

 

Figure 2.15. Stick figures of the approximate mode shapes of the isolated structure normalized at 

their maximum modal displacement. 

 

2.4 Experimental setup 

A new testing frame was recently built in the Intelligent Infrastructure Systems Laboratory 

(IISL) at Purdue University with the aim of testing small-scale structural specimens and including 

axial loading when necessary. This facility is a moment-resisting steel frame mounted on a 

concrete pad. It was designed to apply up to 22kN of compressive vertical force on a specimen to 

represent the weight of the superstructure inside the testing area through a hydraulic jack while the 

specimen is subjected to a variable horizontal force of ±8.8kN, applied by a hydraulic actuator as 

shown in Figure 2.16. 

For this experiment, the specimens under study are fiber-reinforced elastomeric isolators 

which should be subjected to a constant vertical force and variable horizontal force. To achieve 

these conditions, one 609.6mm x 406.4mm x 19.05mm, hot-rolled low carbon steel plate is used 

to act as the vertical loading plane on top of the isolator; this loading is applied on the plate by a 

hydraulic jack, with a rated capacity of 294kN. The vertical loading is measured through a load 
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cell transducer with a rated capacity of 88.9kN placed between the top plate and the hydraulic jack. 

The vertical displacement of the top plate is measured by an LVDT transducer with a stroke of 

±76.2mm.  

 

  

Figure 2.16. Testing facility at the IISL (left) and render of the facility listing its components 

(right). 

 

A linear, double-ended servo-hydraulic actuator (Shore Western, 910D series) with a 

maximum rated force of 9.78kN and a stroke of ±60 mm, is used to apply the horizontal 

displacement on the specimen. Built into the actuator, an LVDT transducer measures the 

displacement of the actuator’s rod. The actuator is connected to a second 558.8mm x 330.2mm x 

19.05mm hot-rolled low carbon steel plate which is attached to four high-loading capacity ball 

bearing carriages sliding on low-friction linear guide rails. A low-profile load cell (Interface, 1000 

series) with a maximum rated force of 11.1kN is connected between the actuator and the steel plate 

to provide the horizontal force measurement of the sliding table. Finally, a piezoelectric 

accelerometer is used to capture the acceleration signal of the sliding table in the direction of 

motion. 

A 5 mm by 5 mm grid pattern was imprinted on the top and bottom steel plates to improve 

the contact friction between the plates and the isolators. This was required specifically for the more 

rigid isolators made from recycled rubber which lacked the proper grip that the isolators made 

from natural rubber had. 

Testing Facility:
1) Hydraulic actuator 

and Horizontal LVDT.
2) Horizontal load cell.
3) Hydraulic jack.
4) Vertical load cell.
5) Vertical LVDT.
6) Bearings/rail system.
7) Top steel plate.
8) Specimen.
9) Bottom steel plate.
10) Accelerometer.

(1)
(2)

(5)

(3)

(4)

(9)

(7)
(8)

(6)

𝑧
𝑥

𝑦

(10)
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2.4.1 Modal analysis and signal distortions 

A set of tests were performed to obtain modal information from the new testing facility. Four 

piezoelectric accelerometers were used as part of the instrumentation to obtain the acceleration 

data from the tests. The location of the accelerometers is shown in Figure 2.17. One accelerometer 

was located on each column at 16 inches from their base to capture the horizontal motion of the 

frame along the direction of the sliding table motion. One accelerometer was located on the right 

column at 30 inches from its base to measure the lateral motion of the frame perpendicular to the 

motion of the sliding table. The last accelerometer was located 5 inches from the edge of the top 

loading plate towards its center to measure the vertical motion that it experiences during the test. 

 

 

Figure 2.17. Location of the piezoelectric accelerometers during the modal identification tests. 

 

A band-limited white noise (BLWN) signal was sent to the bare sliding table, and the Fast 

Fourier Transform was taken to obtain the frequency behavior of the frame. The spectra for the 

vertical motion of the top plate and the horizontal and lateral motion of the columns are shown in 

Figure 2.18. The spectra for the left and right columns appear to contain a similar frequency content 

with three prominent peaks at 129.6 Hz, 168.1 Hz, and 210.7 Hz, which could be associated with 

the horizontal motion of the frame. However, the 129.6 Hz appeared with a larger magnitude in 

the lateral motion spectrum of the right column suggesting that this peak could correspond to a 

lateral mode of the frame. The vertical motion spectrum of the top plate shows peaks with a larger 
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spectral density at 55 Hz, 94 Hz, and 110.8 Hz that are attributed to the vertical motion of the plate 

during the tests since they only were captured by the accelerometer located on top. 

 

    

     

Figure 2.18. Spectrum showing the magnitude of a) the horizontal motion of the right column 

(top-left), b) the horizontal motion of the left column (top-right), c) the lateral motion of the right 

column (bottom- left), and d) the vertical motion of the top plate (bottom-right). 

 

For lower frequency ranges, up to 40 Hz, there does not seem to be any mode that can be 

attributed to the motion of the frame. Some peaks could be identified at 12 Hz, 24 Hz, and 40 Hz 

with very small magnitudes relative to the ones described previously, but they are presumed to 

come from the servo-hydraulic system. In summary, the response spectrum shows that high-

frequency content related to the motion of the setup is found above 50 Hz. Therefore, it is 

concluded that there is no significant frequency content due to the frame motion that could 

contaminate the low-frequency range of interest (up to 40 Hz). 
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The accelerometer attached to the sliding table, as shown in Figure 2.16, was used to capture 

the acceleration signal of the sliding table itself.  

Two major causes of signal distortion, introduced by the sliding table, were observed in the 

response spectra obtained for open loop sinusoidal and BLWN input signals. The first type of 

distortion identified was a high-frequency component in the horizontal motion response when the 

table was both loaded and unloaded, occurring between around 50 Hz to 90 Hz. This distortion 

corresponds to the oil-column resonance effect and is shown in Figure 2.19a. 

The oil-column inside an actuator can act as a spring that reacts to the mass of the sliding 

table, forming a mass-spring system. The frequency of this system is termed the oil-column 

resonant frequency (Qian, Ou, Maghareh, & Dyke, 2014) and was identified in our transfer system 

by sending a BLWN signal to the unloaded sliding table and estimating a transfer function between 

the desired displacement signal as the input and the measured force of the actuator as the output 

(Ozcelik, Conte, & Luco, 2021). Figure 2.19a shows an increase in gain around 71Hz, which 

corresponds to the oil-column resonant frequency. 

 

   

Figure 2.19. a) Estimated force-to-command displacement transfer function (left) and b) 

harmonic distortions (right) 

 

When the sliding table was tested without any specimen, the second type of distortion was 

more evident under a sine wave input signal: even and odd harmonics of the exciting frequency 

were present in the measured signals, as shown in Figure 2.19b. These distortions can be attributed 

to the nonlinearities present in the servo-hydraulic system, such as a nonlinear flow-pressure 

relationship or a flow-gain nonlinearity (Ozcelik, Conte, & Luco, 2021). 
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Between these two types of signal distortions identified, the oil-column resonance has a 

greater influence on the real-time hybrid simulation; since it is fed back to the numerical 

substructure, its effect slips into the displacement signal that is sent to the actuator where it is 

amplified. The harmonic distortions are more noticeable in open loop tests and when the input 

signal is periodic in nature (Airouche, Aknouche, Bechtoula, Mezouer, & Kibboua, 2018; Yao, 

Hu, Fu, & Han, 2011).  
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 EXPERIMENTAL CHARACTRIZATION AND MODELING OF THE 

SLIDING TABLE MECHANICAL SYSTEM 

This chapter explains the mechanical model of the sliding table to have a better understating 

of the dynamics present in the system by means of analyzing the hysteresis curves for the 

displacement, velocity, and acceleration signals. The mechanical model formulated to simulate the 

behavior of the experimental setup is described in Section 3.2, while Section 3.3 presents the 

procedure followed for identification.  

3.1 Testing program 

A set of signals were sent to the bare sliding table to obtain enough observations to perform 

the subsequent identification analysis. The selection of the input signals in the program was based 

on the assumed range of amplitudes (up to 50 mm) and frequencies (up to 40Hz) that the sliding 

table is expected to be subjected to throughout the different tests. The signals measured for each 

of the tests are displacement of the sliding table, acceleration of the sliding table, and force exerted 

by the actuator. The list of signals is shown in Table 3.1. 

 

Table 3.1. Signals that were part of the testing program. 

Signal type Code 

Max. abs. 

Displ. 

[mm] 

Max. abs. 

Accel. 

[m/𝒔𝟐] 

Max. abs. 

Force 

[N] 

Max. 

frequency 

[Hz] 

Duration 

[s] 

Displ. 

Standard 

dev. [mm] 

BLWN WN1 12.28 197.05 13179.53 - 30.00 49.96 

BLWN WN2 0.22 2.60 30.59 - 30.00 5.00 

BLWN WN3 1.64 192.13 5369.53 - 30.00 5.00 

BLWN WN4 1.80 197.04 6012.20 - 120.00 5.00 

BLWN WN5 3.87 198.22 10071.72 - 120.00 10.01 

CHIRP CH1 10.28 166.73 10600.44 39.50 120.00 - 

CHIRP CH2 10.26 166.98 10498.05 39.50 120.00 - 

CHIRP CH3 10.26 165.96 10618.74 39.50 120.00 - 

CHIRP CH4 10.31 174.11 10460.78 39.50 120.00 - 

SINE SN1 9.25 1.99 209.15 0.25 60.00 - 

SINE SN2 9.37 5.20 212.04 0.25 60.00 - 

SINE SN3 10.37 4.74 198.12 0.25 60.00 - 

SINE SN4 45.83 11.47 484.99 0.25 60.00 - 

SINE SN5 40.81 14.47 525.74 0.25 60.00 - 
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Table 3.1. continued 

Signal type Code 

Max. abs. 

Displ. 

[mm] 

Max. abs. 

Accel. 

[m/𝒔𝟐] 

Max. abs. 

Force 

[N] 

Max. 

frequency 

[Hz] 

Duration 

[s] 

Displ. 

Standard 

dev. [mm] 

SINE SN6 25.57 8.68 361.61 0.25 60.00 - 

SINE SN7 10.29 7.88 302.45 0.50 60.00 - 

SINE SN8 25.51 14.30 563.25 0.50 60.00 - 

SINE SN8 25.51 14.30 563.25 0.50 60.00 - 

SINE SN9 40.73 18.86 755.63 0.50 60.00 - 

SINE SN10 10.21 16.19 635.58 1.00 60.00 - 

SINE SN11 25.26 20.96 710.13 1.00 60.00 - 

SINE SN12 40.43 48.50 1128.69 1.00 60.00 - 

SINE SN13 9.65 23.58 998.80 3.00 60.00 - 

SINE SN14 24.25 141.09 2019.18 3.00 60.00 - 

SINE SN15 38.92 155.39 2751.61 3.00 60.00 - 

SINE SN16 9.14 33.60 1377.91 5.00 60.00 - 

SINE SN17 22.68 153.66 2871.04 5.00 60.00 - 

SINE SN18 7.67 68.94 2093.96 10.00 60.00 - 

TRIANGULAR TR1 10.18 4.75 207.13 0.25 60.00 - 

TRIANGULAR TR2 25.17 8.30 347.05 0.25 60.00 - 

TRIANGULAR TR3 40.18 9.98 447.18 0.25 60.00 - 

TRIANGULAR TR4 10.02 5.94 261.54 0.50 60.00 - 

TRIANGULAR TR5 24.79 8.89 363.59 0.50 60.00 - 

TRIANGULAR TR6 39.59 14.47 489.31 0.50 60.00 - 

TRIANGULAR TR7 9.73 7.41 329.94 1.00 60.00 - 

TRIANGULAR TR8 24.04 17.66 657.04 1.00 60.00 - 

TRIANGULAR TR9 38.65 40.10 1159.29 1.00 60.00 - 

TRIANGULAR TR10 8.68 35.88 713.88 3.00 60.00 - 

TRIANGULAR TR11 21.94 112.14 2469.22 3.00 60.00 - 

TRIANGULAR TR12 40.57 4.00 182.49 0.10 60.00 - 

TRIANGULAR TR13 10.27 3.64 160.08 0.10 60.00 - 

3.2 Model formulation and characterization approach 

The hysteresis curves for the measured displacement, calculated velocity, and measured 

acceleration were all plotted against the actuator’s measured force and shown in Figure 3.1. These 

curves correspond to a 10 mm and 0.5 Hz sine wave that was sent to the sliding table as the input 

signal. 

Figure 3.1a shows that there is a virtually constant opposing force when the plate is from the 

maximum to the minimum displacements with an approximate magnitude of 50 N. The possibility 

of relatively large elastic forces acting on the system is discarded since no relationship appears to 
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develop in either direction of motion. One particularity of this figure is the small bumps that appear 

when the plate is displacing around 5 mm, 0 mm, and -6 mm. The position at which these bumps 

occur varies depending on the amplitude of the exciting signal. These bumps are associated with 

the harmonic distortions that are present in the force measurement due to the nature of the input 

signal and the nonlinearities of the servo-hydraulic system since they disappear after the signal is 

filtered with a low-pass filter with a cut-off frequency close to the frequency of the input signal. 

Another feature of this curve are the relatively larger peaks when the actuator switches direction. 

These peaks are attributed to the friction coefficient changing at the beginning of each direction of 

motion from its static to its dynamic value (Ozcelik , 2008). 

 

    

 

Figure 3.1. Hysteresis curves for a) actuator’s measured force vs. measured displacement(top-

left), b) measured force vs. computed velocity (top-right), and c) measured force vs. measured 

acceleration (bottom-center). 
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Figure 3.1b shows the relationship between the velocity (computed from the measured 

displacement) of the sliding table and the measured actuator’s force. It can be considered as the 

result of two phases. The first relates to the overcoming of the Coulomb friction force by the 

actuator and occurs when the force raises to approximately 50 N in a very small time duration at 

the start of the motion. In the second phase, the relationship between the force and the velocity 

follows an approximately linear relationship and can be approximated as viscous damping. 

The last hysteretic curve in Figure 3.1c shows how the measured force varies with the 

measured acceleration. For positive values of acceleration, there is a negative force that is almost 

constant at –50 N. For a negative acceleration, which corresponds to the moment when the plate 

is passing through the origin, there is a constant force of 50 N. 

The previous analysis was carried out for different signals, and it was determined that the 

behavior is dependent on the frequency of the input signal. Figure 3.2a shows the variation of the 

actuator’s force as a function of the measured displacement and the frequency of the input signal. 

A chirp with an amplitude of 10 mm and a frequency ranging from 0.001 Hz to 40 Hz was used as 

the input signal to generate this plot. The hysteretic curves corresponding to the selected chirp 

signal is shown in Figure 3.2. 

Figure 3.2a shows that the measured force at low frequencies seems to be very small, and 

remain a constant value during the different direction of motion, as previously described in Figure 

3.1a. The forces gradually increase with the increase of frequency, to depend almost linearly on 

the displacement. This dependency is associated with the increase of the inertial restoring force 

developed as the acceleration increases with frequency (Luco, Ozcelik, & Conte, 2010). Since the 

force plotted in Figure 3.2 are the total actuator force, the inertial effects are included in the 

hysteresis curve for displacement. 

Figure 3.1c shows a more evident linear dependency between the force and the acceleration 

that occurs at higher frequencies, which is different from the one observed in Figure 3.1c when a 

low-frequency input signal was sent to the sliding table. The low-frequency input signals do not 

induce an acceleration greater enough for a significant inertial force to develop and appear as 

clearly as in Figure 3.2c. The nonlinearity observed in this curve is attributed to the damping in 

the system.  
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Figure 3.2. Hysteresis curves as a function of the frequency plotting the measured force vs. a) the 

measured displacement (top), b) the calculated velocity (center), and c) the measured 

acceleration (bottom). 
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Finally, Figure 3.2b seems to suggest that there is little dependency between the measured 

force and the calculated velocity. However, Figure 3.3a shows that the force-velocity relationship 

for the range of frequencies up to 2.5Hz, which resembles the one seen in Figure 3.1b. Beyond 2.5 

Hz this behavior seems to attenuate and become less present in the signal, suggesting that the force-

velocity relationship becomes less and less prominent in this hysteretic curve, as shown in Figure 

3.3 for the frequency range between 2.5 Hz and 10 Hz.  

 

     

Figure 3.3. Hysteresis curves for measured force vs. computed velocity for the range of a) 0.001 

Hz to 2.5 Hz (left) and b) 2.5 Hz and 10 Hz (right). 

 

From the previous analysis of the hysteresis curves, we can conclude that a linear relationship 

exists between the measured sliding table acceleration and the measured actuator’s force. There is 

no significant elastic restoring force in the system, so it can be considered to be insignificant in 

our analysis. There is a relationship between the velocity of the sliding table and the actuator force 

at low frequencies that can be associated with friction damping for a constant portion of the 

response and a viscous damping related to the linear portion of the response. At high frequencies, 

this relationship seems to be relatively small when compared to the inertial forces. Based on the 

analysis and previous conclusions, a mechanical model for the actuator’s force (𝐹𝑎) can be defined 

as: 

 𝐹𝑎 = 𝑚𝑥̈ + 𝑐𝑥̇ + 𝐶𝜇 sgn(𝑥̇) (3.1) 
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where 𝑚 represents the mass of the sliding table, 𝑐 is the viscous damping coefficient and 𝐶𝜇is the 

Coulomb friction force associated with the railing system which depends on the direction of the 

velocity of the sliding table.  

3.3 Parameter estimation 

The estimation of the parameters was done with a linear least squares error approach where 

the parameters in the mechanical model were estimated from the measured data obtained for the 

displacement, acceleration, and actuator force. The first parameter to be estimated is the effective 

mass of the system which subsequently will allow one to obtain the dissipative forces and their 

parameters from the model (Nilvetti, Pappalardo, & Guida, 2012). 

3.3.1 Inertial force parameter estimation 

The first parameter is to be identified is the effective mass present in the sliding table system 

since the inertial contribution 𝑚𝑥̈ has a greater influence on the actuator’s force signal above 10 

Hz. The signals selected for this analysis correspond to the four chirp signals sent to the sliding 

table because they cover a larger range of frequencies. The estimation begins with the preparation 

of the signals for the analysis. First, the measured displacements, force, and acceleration signals 

are passed through a low-pass filter with a cutoff frequency of 50 Hz to eliminate the effect of the 

oil-column resonance in the signals. To ensure the signals do not contain any distortions due to the 

sudden start or end of the motion the first and last second of measurements are removed from the 

time histories. The signal is then broken down into multiple windows of approximately 2.5% of 

the total signal length and with overlaps of 25% of the window’s length.  

A linear least squares (LLS) approximation was defined to solve for the different unknown 

constants in Equation (3.1). The LLS formulation is defined as:  

 𝜀𝑖(𝐹, 𝑥̈, 𝑥̇) = 𝑓𝑚𝑖( ) − 𝑚𝑥̈𝑖( ) + 𝑐𝑥̇𝑖( ) + 𝐶𝜇 sng[𝑥̇𝑖( )] (3.2) 

 

where 𝜀𝑖 is the error between the estimated function (𝐹𝑎𝑖) from Equation (3.1) and the measured 

force from the actuator (𝐹𝑖). In matrix form: 

 𝜀𝑖(𝐹, 𝑥̈, 𝑥̇) = 𝑌 − 𝑋𝛽 (3.3) 



 

 

49 

where 𝑌 is a 𝑛 × 1 vector that contains the measured force (𝐹𝑖), 𝑛 is the number of measurements, 

𝑋 is a 𝑛 × 3 matrix containing the measurement acceleration and calculated velocity data collected, 

and 𝛽 is a 3 × 1 vector that contains the unknown constants. Symbolically: 

 

𝑌 = 𝐹𝑖( ) 
𝑋 = [𝑥̈𝑖( )   𝑥̇𝑖( )   sng[𝑥̇𝑖( )]] 
𝛽 = [𝑚   𝑐   𝐶𝜇]

𝑇 
(3.4) 

 

The sum of the squared errors, which is the function to be minimized is: 

 𝐿(𝑌, 𝑋, 𝛽) =  ∑(𝑌 − 𝑋𝛽)2
𝑛

𝑖=1

 (3.5) 

Finally, the linear least squares estimate of the actuator’s force will be given by: 

 𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (3.6) 

where 𝛽̂ is the 3 × 1 vector with the minimizing values. 

For this first estimation, the matrix 𝑋 only contains the measured acceleration 𝑥̈𝑖( ) since 

the mass of the system is the minimizing value that will be estimated. 

The estimated actuator force is calculated by Equation (3.1) and using the minimizing values 

of 𝑚, 𝑐, and 𝐶𝜇 obtained in Equation (3.6). The root mean squared error (RMSE) was calculated 

between the estimated actuator force and the measured force, it is given by the equation: 

 
𝑅𝑀𝑆𝐸 = √

∑ [𝑓𝑚(𝑖) − 𝐹𝑎(𝑖)]2
𝑛
𝑖=1

∑ [𝑓𝑚(𝑖)]2
𝑛
𝑖=1

∙ 100% 

 

(3.7) 

 

 

Figure 3.4. Effective mass and RMSE variation for different frequencies. 



 

 

50 

The LLS estimation procedure was performed for each window taken from the chirp signal, 

and an estimated mass and its corresponding RMSE value were obtained along with the maximum 

frequency value found in the window analyzed. The variation of the RMSE and mass for different 

frequencies is shown in Figure 3.4. 

The effective mass, which corresponds to the one with the minimum RMSE was estimated 

to be 38.1 kg, and this value approximates the measured weight of the sliding table of 36.25 kg. 

The estimated value for the mass was used in the next section to estimate the dissipative forces. 

3.3.2 Dissipative force parameter estimation 

The first step in the estimation of the effective dissipative force parameters is taken as the 

value obtained by subtracting the inertial force from the total measured force of the actuator, 

symbolically: 

 𝐹𝑑 = 𝐹𝑎 −𝑚𝑥̈ = 𝑐𝑥̇ + 𝐶𝜇 sng(𝑥̇). (3.8) 

 

Equation (3.8) computes the dissipative forces (𝐹𝑑 ) that can be used to estimate the 

parameters of the mechanical model that corresponds to the friction and viscous damping.  

The identification method described in the previous section was applied once again to 

identify the parameters. The variation of the effective viscous damping and the RMSE for different 

frequencies is shown in Figure 3.5. 

 

 

Figure 3.5. Effective viscous damping and RMSE variation for different frequencies. 
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The effective viscous damping, which corresponds to the value with the minimum RMSE, 

was estimated to be 415.5N/(m/s), and the effective Coulomb damping coefficient was estimated 

to be 38.2N. To verify the estimation of the Coulomb damping coefficient, the estimated viscous 

damping coefficient was held constant while iterating to find a value that would better fit each 

measured signal used in the analysis at low frequencies since this is the range where the friction 

damping behavior is more discernible as shown previously in Figure 3.3a. A better fit was found 

for each signal with an average value of 53.2 N, as shown in Figure 3.6. The final estimated values 

for the mass, viscous damping, and Coulomb damping are presented in Table 3.2. 

 

 

Figure 3.6. Estimated Coulomb damping and RMSE variation for each of the signal in the 

analysis. 

 

Table 3.2. Estimated values for the mass, viscous linear damping, and Coulomb damping. 

𝒎(𝒌𝒈) 𝒄 (𝑵 ∙ 𝒔/𝒎) 𝑪𝝁(𝑵/𝒎) 

𝟑𝟖. 𝟎𝟔 415.58 50.74 

3.3.3 Parametric model validation 

The estimated actuator force was calculated with Equation (3.1), and the values from Table 

3.2 and compared against the measured actuator force. The hysteresis curves of displacement, 

velocity, and acceleration for both, the measured and estimated forces are shown in Figure 3.7.  
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Figure 3.7. Measured and estimated hysteresis curves of a) force vs. displacement (top-left), b) 

force vs. velocity (top-center), c) force vs. acceleration (bottom-left) for a frequency range up to 

39 Hz, d) force vs. displacement (top-left), e) force vs. velocity (top-center), f) force vs. 

acceleration (bottom-left) for a frequency range up to 13 Hz. 
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Figures 3.7a through 3.7c shows the discrepancies between the measured and estimated 

actuator response through the whole range of frequencies up to 39 Hz. Figure 3.7b suggests that 

these discrepancies are due to mainly the estimation of the dissipative forces since the mechanical 

model only includes a linear viscous damping approximation and the measured force suggest that 

there could be a nonlinear damping behavior at high frequencies. The proposed mechanical model 

fits better the measured data for a low frequency range as shown in Figures 3.7d through 3.7f 

which considers only the range of frequencies up to 13 Hz. The average RMSE obtained for the 

signals tested was 9.2%. Figure 3.8 shows that the model seems to approximate well the behavior 

of the actuator’s force against the velocity for the frequency range up to 1.5 Hz  

 

 

Figure 3.8. Measured and estimated hysteresis curves of the actuator’s force vs. velocity for a 

frequency range up to 1.5 Hz. 
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 MODELING AND IDENTIFICATION OF THE TRANSFER SYSTEM  

The formulation and identification of a parametric model for the transfer system is 

explained in this chapter. Section 4.1 describe the theory behind the equations that describe the 

dynamics of the servo valve and actuator. Section 4.2 presents the procedure taken in the 

identification of the model’s parameters. 

4.1 Servo-hydraulic system 

Throughout the years, many models have been proposed to represent the mechanics of a 

servo valve, some of these representations model the dynamics as a proportional gain (Dyke, 

Spencer, Quast, & Sain, 1995), as a linear model as a function of a proportional gain and a time 

constant to account for the speed at which the servo valve responds to the input (De Silva, 2015). 

Second and higher-order models exist in the literature. However, the modal analysis performed in 

Section 2.4.1 to the signal from the measurements of the bare sliding table response suggests that 

the system could be modeled as a first linear system with a static gain and a time constant. De 

Silva (2015) described a system with these characteristics, which are analogous to a tachometer.  

The differential equation that describes the assumed behavior of the servo valve is: 

 𝜏𝑣𝑥̇𝑣 + 𝑥𝑣 = 𝑘𝑣𝑖𝑐 (4.1) 

 

where 𝑖𝑐  is the input command that is sent to the servo valve which produces a spool 

displacement 𝑥𝑣 as the output, 𝜏𝑣 is the time constant and 𝑘𝑣 is a static gain (Conte & Trombetti, 

2000). The corresponding transfer function (𝐺𝑣) will be: 

 𝐺𝑣 =
𝑘𝑣

𝜏𝑣𝑠 + 1
. (4.2) 

 

This representation of the dynamics of the servo valve is valid through a frequency range up 

to 50 Hz and it is under the assumption that it is operating without saturation and the servo valve 

flow-gain relationship is constant around the neutral position, which implies that the spool size is 

the same as the orifices of the servo valve and there is not over or under lap between them (Kusner, 

Rood, & Burton, 1992).  
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The internal servo valve pressure loss-flow relationship is described by considering the 

pressure loss in the internal chambers of the servo valve from the pressure and return lines due to 

the displacement of the spool, and the size of the valve orifices. This results in the following 

nonlinear square root function as a function of the spool displacement 𝑥𝑣: 

 𝑄𝐿 = 𝐶𝑑 ∙ 𝑤 ∙ 𝑥𝑣√
1

𝜌
(𝑃𝑆 − sgn[𝑃𝐿]) (4.3) 

 

where 𝑄𝐿 is the flow through the load that enters and exits the servo valve to and from the hydraulic 

actuator, 𝐶𝑑 is the coefficient of discharge of the servo valve orifices, 𝑤 is the rate of change of 

the opening of the valve orifices with respect to the spool displacement, 𝜌 is the oil density, 𝑃𝑆 is 

the supply pressure, and 𝑃𝐿  is the pressure difference between the load entering one actuator 

chamber and the load exiting the other chamber. This equation can be linearized with respect to a 

specific operating point (the origin) (Merritt, 1991; Wei, 2009), where it becomes: 

 𝑄𝐿 = 𝐾𝑞𝑞𝑥𝑣 − 𝐾𝑐𝑐𝑃𝐿 (4.4) 

 

where 𝐾𝑞𝑞 is the flow gain and 𝐾𝑐𝑐 is the flow-pressure coefficient, these valve coefficients vary 

depending on the operating point chosen.  

The equations that govern the dynamic behavior of the hydraulic actuator is the flow 

continuity equation: 

 𝑄𝐿 = 𝐴𝑥̇𝑚 + 𝐶𝑙𝑃𝐿 +
𝑉

4𝛽
𝑃̇𝐿 (4.5) 

 

where 𝐴 is the area of the piston, 𝐶𝑙 is the leakage coefficient, 𝑉 is the total volume of the fluid 

under compression in both chambers of the actuator and 𝛽 is the effective bulk modulus of the oil. 

For this study, the command displacement 𝑥𝑐 is applied by a proportional controller with a gain 𝐾𝑝.  

 𝑖𝑐 = 𝐾𝑝(𝑥𝑐 − 𝑥𝑚) (4.6) 

 

The equilibrium equation for the sliding table is expressed as: 

 𝑓 =
𝑃𝐿
𝐴
= 𝑚𝑥̈𝑚 + 𝑐𝑥̇𝑚 (4.7) 

 

where, 𝑚 and 𝑐 corresponds to the mass and damping identified for the sliding table. In this section 

a simple mass damper system was selected to represent the dynamics of the sliding table and to 



 

 

56 

simplify the calculations. The term corresponding to the Coulomb friction will be omitted since its 

contribution is very small when compared to the other parameters (Chase, Hudson, Lin, Elliot, & 

Aylwin, 2005). When combining Equations (4.4), (4.5), and (4.7) we get: 

 𝑓̇ =
4𝛽

𝑉
(𝐴𝐾𝑞𝑞𝑥𝑣 − 𝐴

2𝑥̇𝑚 − (𝐾𝑐𝑐 + 𝐶𝑙) ∙ 𝑓). (4.8) 

 

By defining the variable: 𝐾𝑐 = 𝐾𝑐𝑐 + 𝐶𝑙, Equation (4.2), (4.6), and (4.8) can be represented in 

block diagram form as shown in Figure 4.1. 

 

Figure 4.1. Block diagram of the plant. 

 

 

 

 

 

Figure 4.2. Condensation of the block diagram of the plant. a) Condensed block diagram (top) 

and b) variable change (bottom) 

 

---

--

--
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The plant shown in Figure 4.1 can be condensed though the process shown in Figure 4.2 

where 𝐺𝑠 represents the transfer function of the physical specimen (Maghareh, Silva, & Dyke, 

2018) and new variables 𝑎1, 𝑎2, 𝑎3, 𝛽 , and 𝛽1 are defined as follows: 

 

 

𝑎1 = 𝐴𝐾𝑞𝑞
4𝛽

𝑉
     ;      𝑎2 = 𝐴

2
4𝛽

𝑉
     ;      𝑎3 =

4𝛽

𝑉
𝐾𝑐 

 

𝛽 =
𝐾𝑝𝑘𝑣

𝜏𝑣
      ;       𝛽1 =

1

𝜏𝑣
 

(4.9) 

 

The condensed block diagram preserves the velocity feedback loop that exist between the 

specimen and sliding table, and the actuator dynamics due to the control structure interaction 

(Dyke, Spencer, Quast, & Sain, 1995). The variable 𝑎2 represents the stiffness of the oil and if we 

divide this quantity by the mass of the shake stable and the specimen, we can determine the oil-

column resonance of the actuator, symbolically: 

 
𝑓𝑂𝐶𝑅 =

1

2𝜋
∙
√𝐴

2 4𝛽
𝑉
𝑚

 
(4.10) 

 

If we specify the physical specimen transfer function as: 

 𝐺𝑠 =  𝑚𝑥̈𝑚 + 𝑐𝑥̇𝑚 (4.11) 

 

The condensed system in Figure 4.2 can be represented by a single transfer function, given by: 

 𝐺𝑚/𝑐 =
𝑛 

𝑑 𝑠 + 𝑑3𝑠3 + 𝑑2𝑠2 + 𝑑1𝑠 + 𝑑 
 (4.12) 

where:  

 

𝑛 = 𝑎1𝛽  

𝑑 = 𝑚 

𝑑3 = 𝑎3𝑚 + 𝑐 + 𝛽1𝑚 

𝑑2 = 𝑎3𝑐 + 𝑎2 + 𝛽1𝑎3𝑚+ 𝛽1𝑐 
𝑑1 = 𝛽1𝑎3𝑐 + 𝛽1𝑎2 
𝑑 = 𝑎1𝛽  

(4.13) 

4.2 Parametric model identification 

The identification process starts with the estimation of a transfer function that takes the 

desired displacement sent to the system and outputs the measured displacement with the MATLAB 
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function tfest. The signals used to identify the plant were six BLWN signals. This signal was 

selected since it contains information on the oil-column resonant frequency and covers a larger 

range of frequencies when compared with a chirp or a triangular signal. This transfer function is 

set as a fourth-order function with four poles and no zeros (Maghareh, Silva, & Dyke, 2018). The 

relationships shown in Equation (4.13) are then used to compute the parameters 𝑎1𝛽 , 𝑎2, 𝑎3, and 

𝛽1 . These parameters are estimated through a nonlinear least squares estimation done with 

MATLAB. 

The identified parameters were then inputted into a Simulink model of the block diagram in 

Figure 4.2 along with a chirp input signal of 10 mm of amplitude and spanning over a frequency 

range from 0.001 Hz to 40 Hz. The RMS error was calculated between the output signal of the 

Simulink model and the signal measured in the laboratory due to the same input signal. This 

process was repeated for each of the BLWN test signals, and the set of parameters with the least 

RMS error were selected as the final parameters that were used for the virtual model of the transfer 

system. The values for the parameters identified are presented in Table 4.1. 

 

Table 4.1. Values identified for the parametric model of the transfer system. 

𝜷𝟏(𝟏/𝒔𝒆𝒄) 𝒂𝟏𝜷𝟎(𝒎 𝑷𝒂/𝒔𝒆𝒄
𝟐) 𝒂𝟐(𝒎 𝑷𝒂) 𝒂𝟑(𝟏/𝒔𝒆𝒄) 

𝟐𝟐𝟖. 𝟕𝟔 6.3208 × 101  5.5831 × 10  116.98 

 

 The frequency response functions of the virtual model of the transfer system are compared 

in Figure 4.3 against the estimated transfer function that was estimated from measured data. The 

frequency response functions were estimated from external command to measured sliding table 

displacement. The comparison between the measured displacement time histories is shown in 

Figure 4.4. 

Figure 4.3 shows that the simulated model response gain variation with frequency and the test 

signal have an RMSE of 9.4%. The model can approximate the measured displacement with an 

average RMSE of 8.8% for all test signals for the full range of frequencies in the test signal 

(0.001Hz to 40Hz). The difference in gain that is shown in Figure 4.3 is attributed to the difference 

in the nature of the signal used for estimation (BLWN) and the ones used for validation (Chirp) 

for a comparison between signals of the same nature, the RMSE between the estimated and 
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simulated gain curves was observed to go as low as 4%. The model simulates the phase spectra of 

the test signals with an RMSE of 7% for the whole frequency range of interest. 

 

 

Figure 4.3. Amplitude (left) and phase spectra (right) of the virtual model and estimated transfer 

function of the transfer system. 

 

 

Figure 4.4. Displacement experimentally measured and obtained from the virtual model of the 

transfer system for a (left) frequency range from 0.001 to 2Hz and (right) at a frequency of 

19 Hz. 

 

The model, however, overestimates the forces generated for signals with lower amplitudes 

(5 mm) and underestimates them when the input signal has large amplitudes (10 mm). The oil-

column frequency corresponding to the set of parameters chosen is 61 Hz which is similar to the 

71 Hz identified through a transfer function estimation, with a difference of 14%. Even though this 

percentage is considerably high, the desired effect of the oil-column resonance is indeed captured 

in the model, which is a helpful feature when modeling a control system since it is imperative to 

model a controller that does not substantially intensify this resonance. 
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 PARAMETRIC IDENTIFICATION AND MODELING OF THE 

SPECIMENS 

The present chapter describes the models adopted to describe the hysteretic behavior of the 

isolators. Two Bouc-Wen models accounting for different levels of nonlinearities are described in 

Section 5.1 followed by the results of the identification process and the fitting of each model to 

the different types of isolators in Section 5.2. 

5.1 Bouc-Wen model 

The restoring force 𝑓𝑚( ) measured from the isolators is a highly nonlinear quantity since it 

will depend on the nonlinear hyper elastic and viscoelastic material behavior of the rubber (Al-

Azawi, Said, Almusaui, & Al-Zaidee, 2017), contact nonlinearities due to the characteristic 

unbonded nature of the isolator, and the composite interaction between the reinforcement fiber 

layers and the rubber layers. 

The Bouc-Wen model is a method widely used to represent the hysteretic curve of various 

classes of nonlinear materials and structural members (Ikhouane & Rodellar, 2007). Many 

modifications have been implemented to the model to account for different types of nonlinearities 

such as softening, hardening (Manzoori & Toopchi-Nezhad, 2017), stiffness and strength 

degradation (Erlicher & Bursi, 2009), force asymmetry (Chen & Ahmadi, 1992), etc. The isolator 

restoring force can be captured through a Modified Bouc-Wen Model that accounts for the 

softening of the isolator at the beginning of the deformations and a hardening behavior that the 

isolator develops at very large deformations (when the vertical faces of the isolator come in total 

contact with the top and bottom plates). This behavior is observed in the hysteretic response of the 

isolator as inflection points. In the softening stage, the isolator experiences relatively greater 

displacement without a significant increase of the shear force and in the hardening stage, the shear 

force increases as the deformations increase. This behavior is more evident in isolators with natural 

rubber and carbon fiber reinforcement, while for isolators with natural or recycled rubber and 

polyester fiber reinforcement these nonlinearities are subtler. The original Bouc-Wen Model does 

not account for the variation in the stiffness or the force asymmetry since the total force in the 

model is the sum of a linear term and a hysteretic term. The linear term dictates the variation of 
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the stiffness in the model; thus, the slope of the overall hysteresis loops will remain linear due to 

this term. Manzoori & Toopchi-Nezhad (2017) proposed an extension to the Modified Bouc-Wen 

Model presented by Chen & Ahmadi (1992) (Chen & Ahmadi, 1992) which accounts for this 

nonlinear behavior by introducing a fifth order polynomial term that describes the variation of the 

stiffness with the lateral displacement (Manzoori & Toopchi-Nezhad, 2017). The isolator force 

that this model helps to predict, 𝑓𝐵𝑊 ( ), is given by: 

 𝑓𝐵𝑊( ) = 𝑓𝐾( ) + 𝑓𝐶( ) (5.1) 

 

The elastic contribution, 𝑓𝐾( ),  is approximated as a 5th-order polynomial with five 

coefficients. The 3rd and 5th order terms in this polynomial will help account for the distinctive 

softening and subsequent hardening behavior of the isolators. The lateral force time history 

asymmetry with respect to the 𝑥-axis, can be modeled by including a 2nd and 4th-order terms 

shown in equation (5.2). 

 𝑓𝐾( ) = 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎 𝑥
 + 𝑎 𝑥

  (5.2) 

 

The dissipative contribution, 𝑓𝐶( ), will be given by a linear component proportional to the 

lateral velocity and the hysteretic component as a function of the hysteric variable 𝑧( ), as given 

in equations (5.3) and (5.4), respectively. 

 𝑓𝐶( ) = 𝑐𝑏𝑤𝑥̇ + 𝑏 (1 −
𝛽

𝐴
|𝑧|𝑛) 𝑧, and  (5.3) 

 𝑧̇( ) =
1

𝑌
(𝐴𝑥̇ − 𝛽𝑥̇|𝑧|𝑛 − 𝛾|𝑥̇||𝑧|𝑛−1𝑧). (5.4) 

  

In the previous equations z is the hysteretic variable that controls the hysteretic behavior of the 

isolator, 𝑐𝑏𝑤 is the viscous damping coefficient, and 𝐴, 𝛽, 𝑌, 𝑏, and 𝑛 are parameters that control 

the shape of the hysteresis loops. 

Equation (5.2) is the elastic contribution to the restoring force and has a linear term 𝑎1𝑥 that 

can be assumed as an initial stiffness that acts on the system in Equation (2.14) taking 𝑘1 = 𝑎1. 

This is done to ensure that 𝐾𝑛 and 𝐶𝑛 in Equation (2.13) are well-conditioned matrices, the same 

can be assumed for the damping contribution as 𝑐1 = 𝑐𝑏𝑤. 

As explained in Section 2.3, certain isolators present a behavior where the softening and 

hardening effects are very subtle, for these isolators a Bouc-Wen model with a linear dependency 

on the average stiffness of the isolator was used, as given by: 
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 𝑓𝐵𝑊( ) = 𝛼𝑘 𝑥 + (1 − 𝛼)𝑘 𝑧 (5.5) 

 𝑧̇( ) = 𝑥̇[𝐴 − |𝑧|𝑛(𝛾 + 𝛽sgn(𝑥̇𝑧))] (5.6) 

 

In the previous equations, 𝑘  is the initial stiffness, 𝛼 is the ratio between the post yielding 

to pre yielding stiffness, and 𝐴, 𝛽, and 𝑛 are parameters that control the shape of the hysteresis 

loops. 

 Two models were selected to serve as a comparison of how well each of these models 

match the behavior of the isolator measured both from the shear tests and from the RTHS tests 

with seismic loading. 

5.2 Parameter estimation 

The estimation of the parameters from the two models presented in Section 5.1 was done 

with the parameter estimation tool from Simulink, which performs the estimation by minimizing 

the sum of the squared errors.  

The estimation procedure starts with the filtering of the displacement, acceleration, and force 

signals from high-frequency content to remove the effect of the oil-column frequency from the 

data, this objective is achieved through a low-pass filter with a cut-off frequency of 25 Hz. In this 

step, the velocity signal is also estimated from the displacement time history. The next step is to 

remove the inertial and dissipative forces introduced by the sliding table from the measured force 

signal so we can obtain the restoring force corresponding to the isolator, symbolically: 

 𝑓𝐼( ) = 𝑓𝑚( ) − 𝑚𝑥̈𝑚 + 𝑐𝑥̇𝑚. (5.7) 

 

After the signals are prepared, the measured displacement, 𝑥𝑚, is set as the input signal in 

the simulation and the calculated isolator force, 𝑓𝐼, is set as the output. The parameter estimator 

tool from Simulink then performs the estimation until the change in the sum of the squares 

compared to its initial value is less than the default threshold value set of 1e-6. After the parameters 

have been collected, they are input back into the Bouc-Wen model and along with the measured 

displacement from each of the test signals selected for the estimation and are run through the model 

to obtain the estimated force, 𝑓𝐵𝑊. The estimated force is compared with the measured force, 𝑓𝐼, 

and a RMSE value is calculated between these two signals. The set of parameters that yielded the 

least amount of error is selected as the final values of the estimation and are presented, for the 
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Bouc-Wen model presented in Equation (5.1), in Table 5.1 through 5.6, the visualization of the 

fitting of the model to the measured data is shown in Figures 5.1 through 5.6. 

 

Table 5.1. Estimated values for the Bouc-Wen model with a fifth order polynomial for the 

Isolator NCA1. 

𝑨 𝒏 𝜸 𝜷 𝒀 𝒄𝒃𝒘 

𝟔. 𝟐𝟎𝟏𝟗𝒆 − 𝟎𝟏 1.0015𝑒 + 00 −5.0622𝑒 + 00 −2.8707𝑒 + 00 −7.8691𝑒 + 00 9.0382𝑒 − 14 

𝒃 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

−𝟔. 𝟎𝟔𝟐𝟗𝒆 + 𝟎𝟐 9.0447𝑒 + 01 −3.6592𝑒 − 01 −9.1027𝑒 − 02 4.1912𝑒 − 04 6.7086𝑒 − 05 

 

 

 

Figure 5.1. Fitting of the estimated Bouc-Wen model with a fifth order polynomial for the 

Isolator NCA1. a) Measured force time history and b) hysteresis curve. 

 

 

Table 5.2. Estimated values for the Bouc-Wen model with a fifth order polynomial for the 

Isolator NPA1. 

𝑨 𝒏 𝜸 𝜷 𝒀 𝒄𝒃𝒘 

𝟕. 𝟓𝟎𝟖𝟎𝒆 − 𝟎𝟑 2.3627𝑒 + 00 −4.4791𝑒 − 03 −2.5005𝑒 − 03 −1.4494𝑒 − 02 8.9387𝑒 − 14 

𝒃 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

−𝟕. 𝟗𝟕𝟎𝟐𝒆 + 𝟎𝟏 6.0823𝑒 + 01 −4.2709𝑒 − 01 −5.1962𝑒 − 02 3.1199𝑒 − 04 3.9400𝑒 − 05 
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Figure 5.2. Fitting of the estimated Bouc-Wen model with a fifth order polynomial for the 

Isolator NPA1. a) Measured force time history and b) hysteresis curve. 

 

Table 5.3. Estimated values for the Bouc-Wen model with a fifth order polynomial for the 

Isolator NPB8. 

𝑨 𝒏 𝜸 𝜷 𝒀 𝒄𝒃𝒘 

𝟏. 𝟏𝟗𝟐𝟒𝒆 + 𝟎𝟎 2.9386𝑒 + 00 −1.1047𝑒 + 01 −2.7329𝑒 + 00 −9.0858𝑒 + 00 9.0381𝑒 − 14 

𝒃 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

−𝟖. 𝟏𝟕𝟎𝟑𝒆 + 𝟎𝟐 9.4066𝑒 + 01 −1.7597𝑒 + 00 −1.9687𝑒 − 01 2.5433𝑒 − 03 1.6542𝑒 − 04 

 

 

Figure 5.3. Fitting of the estimated Bouc-Wen model with a fifth order polynomial for the 

Isolator NPB8. a) Measured force time history and b) hysteresis curve. 
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Table 5.4. Estimated values for the Bouc-Wen model with a fifth order polynomial for the 

Isolator RPA1. 

𝑨 𝒏 𝜸 𝜷 𝒀 𝒄𝒃𝒘 

𝟐. 𝟒𝟑𝟏𝟐𝒆 − 𝟎𝟏 1.0012𝑒 + 00 −3.7507𝑒 + 00 −3.1316𝑒 + 00 −8.1565𝑒 + 00 9.0382𝑒 − 14 

𝒃 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

−𝟏. 𝟓𝟑𝟑𝟖𝒆 + 𝟎𝟑 1.2218𝑒 + 02 −3.6421𝑒 − 01 −8.0871𝑒 − 02 4.2023𝑒 − 04 7.1514𝑒 − 05 

 

 

 

Figure 5.4. Fitting of the estimated Bouc-Wen model with a fifth order polynomial for the 

Isolator RPA1. a) Measured force time history and b) hysteresis curve. 

 

 

Table 5.5. Estimated values for the Bouc-Wen model with a fifth order polynomial for the 

Isolator RPB2. 

𝑨 𝒏 𝜸 𝜷 𝒀 𝒄𝒃𝒘 

𝟔. 𝟓𝟐𝟒𝟏𝒆 − 𝟎𝟏 1.0001𝑒 + 00 −3.9769𝑒 + 00 −3.2115𝑒 + 00 −7.8646𝑒 + 00 9.0382𝑒 − 14 

𝒃 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

−𝟔. 𝟒𝟎𝟖𝟏𝒆 + 𝟎𝟐 9.7666𝑒 + 01 −3.6547𝑒 − 01 −8.8368𝑒 − 02 4.1916𝑒 − 04 6.8427𝑒 − 05 
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Figure 5.5. Fitting of the estimated Bouc-Wen model with a fifth order polynomial for the 

Isolator RPB2. a) Measured force time history and b) hysteresis curve. 

 

Table 5.6. Estimated values for the Bouc-Wen model with a fifth order polynomial for the 

Isolator RPC9. 

𝑨 𝒏 𝜸 𝜷 𝒀 𝒄𝒃𝒘 

𝟕. 𝟐𝟓𝟐𝟕𝒆 − 𝟎𝟐 1.0055𝑒 + 00 −3.6824𝑒 + 00 −3.2905𝑒 + 00 −7.9241𝑒 + 00 9.0381𝑒 − 14 

𝒃 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 

−𝟑. 𝟎𝟕𝟎𝟗𝒆 + 𝟎𝟑 1.0543𝑒 + 02 −3.6553𝑒 − 01 −8.4917𝑒 − 02 4.1824𝑒 − 04 7.0395𝑒 − 05 

 

 

Figure 5.6. Fitting of the estimated Bouc-Wen model with a fifth order polynomial for the 

Isolator RPC9. a) Measured force time history and b) hysteresis curve. 
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 The estimation procedure is repeated for the Bouc-Wen model that possesses a linear 

dependency on the average stiffness for all the previous specimens. The resulting set of parameters 

are presented in Table 5.7 through Table 5.12, the visualization of the fitting of the model to the 

measured data is shown in Figures 5.7 through 5.12. 

 

Table 5.7. Estimated values for the Bouc-Wen model with a linear stiffness relationship for the 

Isolator NCA1. 

𝑨 𝒏 𝜸 𝜷 𝒌𝟎 𝜶 

𝟐. 𝟖𝟒𝟐𝟏𝒆 − 𝟎𝟏 2.6581𝑒 + 00 −4.0526𝑒 + 07 4.1502𝑒 + 07 1.8856𝑒 + 05 3.4687𝑒 − 01 

 

 

 

Figure 5.7. Fitting of the estimated Bouc-Wen model with a linear stiffness relationship for the 

Isolator NCA1. a) Measured force time history and b) hysteresis curve. 

 

 

Table 5.8. Estimated values for the Bouc-Wen model with a linear stiffness relationship for the 

Isolator NPA1. 

𝑨 𝒏 𝜸 𝜷 𝒌𝟎 𝜶 

𝟒. 𝟑𝟏𝟐𝟗𝒆 − 𝟎𝟏 1.5948𝑒 + 00 −2.7968𝑒 + 04 3.0449𝑒 + 04 1.2854𝑒 + 05 3.4830𝑒 − 01 
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Figure 5.8. Fitting of the estimated Bouc-Wen model with a linear stiffness relationship the 

Isolator NPA1. a) Measured force time history and b) hysteresis curve. 

 

Table 5.9. Estimated values for the Bouc-Wen model with a linear stiffness relationship for the 

Isolator NPB8. 

𝑨 𝒏 𝜸 𝜷 𝒌𝟎 𝜶 

𝟏. 𝟏𝟓𝟗𝟐𝒆 + 𝟎𝟎 2.0756𝑒 + 00 −9.1369𝑒 + 04 1.2927𝑒 + 05 1.3015𝑒 + 05 3.5872𝑒 − 01 

 

 

Figure 5.9. Fitting of the estimated Bouc-Wen model with a linear stiffness relationship for the 

Isolator NPB8. a) Measured force time history and b) hysteresis curve. 
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Table 5.10. Estimated values for the Bouc-Wen model with a linear stiffness relationship for the 

Isolator RPA1. 

𝑨 𝒏 𝜸 𝜷 𝒌𝟎 𝜶 

𝟏. 𝟒𝟗𝟕𝟕𝒆 + 𝟎𝟎 2.9148𝑒 + 00 -4.3787e+05 6.0062𝑒 + 05 2.7228𝑒 + 05 4.2926𝑒 − 01 

 

 

 

 

Figure 5.10. Fitting of the estimated Bouc-Wen model with a linear stiffness relationship for the 

Isolator RPA1. a) Measured force time history and b) hysteresis curve. 

 

 

 

Table 5.11. Estimated values for the Bouc-Wen model with a linear stiffness relationship for the 

Isolator RPB2. 

𝑨 𝒏 𝜸 𝜷 𝒌𝟎 𝜶 

𝟏. 𝟔𝟖𝟎𝟑𝒆 + 𝟎𝟎 2.6644𝑒 + 00 −4.4816𝑒 + 05 5.5680𝑒 + 05  2.5172𝑒 + 05 2.5229𝑒 − 01 
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Figure 5.11. Fitting of the estimated Bouc-Wen model with a linear stiffness relationship for the 

Isolator RPB2. a) Measured force time history and b) hysteresis curve. 

 

Table 5.12. Estimated values for the Bouc-Wen model with a linear stiffness relationship for the 

Isolator RPC9. 

𝑨 𝒏 𝜸 𝜷 𝒌𝟎 𝜶 

𝟖. 𝟔𝟑𝟔𝟐𝒆 − 𝟎𝟏 2.5888𝑒 + 00 −5.2228𝑒 + 04 1.0058𝑒 + 05 3.4588𝑒 + 05 2.8531𝑒 − 01 

 

 

Figure 5.12. Fitting of the estimated Bouc-Wen model with a linear stiffness relationship for the 

Isolator RPC9. a) Measured force time history and b) hysteresis curve. 
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From the parameter estimation results, it is observed that the fifth-order polynomial model 

fits better the overall hysteretic behavior of the isolators than the model with a first-order 

polynomial. This result is due to the fact the fifth-order model accounts for the hardening and 

softening of the specimen and for the force asymmetry present in the isolator’s response. The fifth-

order model presented a better fit, particularly for the isolators NCA1 and NPA1. The hysteretic 

behavior for the rest of the isolators is highly nonlinear, varying from a phase with softening and 

hardening to a phase where these effects decrease in intensity and the dissipated area increases for 

the greater cycles. This change in behavior can be attributed to damage suffered by the isolator 

during the larger amplitude cycles. Some of the damages include the isolators breaking due to 

shear deformations or the outer layers of the isolators degrading due to friction. Since these 

isolators were stiffer than the NCA1 and NPA1, they were not able to withstand high deformations 

and deform to develop softening and hardening effects. For these reasons, the Bouc-Wen models 

of 5th and 1st orders for the isolators NCA1 and NPA1 were selected to be part of the virtual model 

of the plant that is going to aid in the design of a controller. 
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 DESIGN OF THE CONTROL SYTSEM AND TRACKING 

PERFORMANCE 

This chapter presents the steps taken to develop a controller for the RTHS system. Section 6.1 

presents a preliminary assessment of the time delay in the signal caused by the inherent dynamics 

of the transfer system and Section 6.2 shows the experimental validation of the selected delay 

compensator. Lastly, Section 6.3 describes the tuning of a PI controller to account for amplitude 

differences in the tracking of the desired signal. 

6.1 Preliminary assessment  

Any signal that is sent to the transfer system gets distorted due to its inherent dynamics. Some 

of these distortions include amplitude changes, time delays, frequency distortions due to the oil-

column resonance, and harmonic distortions due to the nonlinearities in the servo valve. The first 

two types of distortions are shown in the magnitude and phase response functions in Figure 4.3, 

which show the variation of the response of the transfer system for different frequencies. The last 

two types of distortions were addressed in Section 2.4.1.  

The inherent delay present in the transfer system is of approximately 27 milliseconds for a 

sine wave of 1 Hz and 10 mm of amplitude, 86 ms at 3 Hz, and 72 ms at 10 Hz. As shown in 

Section 2.4.1 this delay is close to the critical time delay that would negatively affect the stability 

of the partition. Since the critical time delay is 35 ms, the transfer system will remain stable, 

although the delay will be reflected as a negative damping that is being added into the system, thus 

making the system develop greater amplitudes. This effect can be simulated in the model presented 

in Figure 2.5, where the displacement response of the base floor of the structure increases 

significantly for a delay of 35 ms as shown in Figure 6.1. The signal sent to the system corresponds 

to the Campano Lucano 290ya (CAM) ground motion (Calabrese, Spizzuoco, Serino, Della Corte, 

& Maddaloni, 2015) with an intensity of 50% which was one of the signals that were used to test 

the specimens at the University of Naples Federico II (Magliulo, et al., 2012), the acceleration time 

history and spectra of this ground motion is shown in Figure 6.2. 
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Figure 6.1. Increase in displacement due to the added delay. 

 

 

Figure 6.2. Campano Lucano 290ya (CAM) ground motion, a) acceleration time history (left) 

and b) spectra (right). 

 

This effect can be experimentally demonstrated with the experimental setup shown in Section 

2.4, given that the partition remains stable with delays that the transfer system exhibited at 

increasing frequencies. Figure 6.3 shows the same ground motion sent to the numerical 

substructure shown in Figure 2.5, but this time delay will be dictated by the delay in the transfer 

system and the experimental substructure will be represented by the isolators itself. This response 
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was controlled to remain within the operational limits of the setup by reducing the intensity of the 

ground motion to 33% and amplifying feedback restoring force from the isolation layer 2.5 times 

the measured force. It is observed in Figure 6.3 that this response is similar to the delayed signal 

shown in Figure 6.1 when representing the transfer system as a pure time delay system. Therefore, 

the first step to be taken to control the RTHS system is to compensate for the delay in the system. 

Many delay compensation techniques have been developed over the years (Carrion, Spencer, 

& Spencer, 2007), and some of them model the transfer system as if it only introduces a time delay 

to the signal sent to the transfer system (Chen & Ricles, 2009). Others have developed adaptive 

techniques to account for cases where the delay is not constant through the simulation (Chae, 

Kazemibidokhti, & Ricles, 2013).  

The inverse compensation (IC) technique (Chen & Ricles, 2009) assumes a simplified first-

order discrete transfer function to represent the dynamics of the servo-hydraulics system. In that 

sense, the measured displacement will be equal to: 

 𝑑𝑚
𝑖 = 𝑑𝑚

𝑖−1 +
1

𝛼 ∙ 𝛿 
(𝑑𝑐

𝑖 − 𝑑𝑚
𝑖−1) ∙ 𝛿 . (6.1) 

 

Here, the measured displacement of the current step (𝑑𝑚
𝑖 ) will be extrapolated with a slope equal 

to the difference between the current displacement that was sent to the transfer system (𝑑𝑐
𝑖 ) and 

the measured displacement of the previous step (𝑑𝑚
𝑖−1) divided by the time that it takes for the 

measured displacement to be fed back the integration algorithm (𝛼𝛿 ). The variable 𝛼 is an integer 

greater than one and 𝛿  is the time step increment that takes the value of 1/4096 sec throughout 

our experiment. By applying the discrete z-transform to Equation (6.1) we obtain a transfer 

function that takes the command displacement sent to the transfer system and outputs the measured 

displacement: 

 
𝑋𝑚(𝑧)

𝑋𝑐(𝑧)
=

𝑧

𝛼 ∙ 𝑧 − (𝛼 − 1)
 (6.2) 

 

where 𝑋𝑚(𝑧)  is the discrete z-transform of 𝑑𝑚
𝑖  and 𝑋𝑐(𝑧)  is the discrete transform of 𝑑𝑐

𝑖 .  

Applying the inverse model principle to Equation (6.2) leads to the following transfer function: 

 
𝑋𝑝(𝑧)

𝑋𝑐(𝑧)
=
𝛼 ∙ 𝑧 − (𝛼 − 1)

𝑧
 (6.3) 
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where 𝑋𝑝(𝑧) is the discrete z-transform of the predicted (or compensated) displacement that is 

going to be sent to the transfer system. The time domain form of Equation (6.3) can be obtained 

by applying the inverse discrete z-transform on it, symbolically: 

 𝑑𝑝
𝑖 = 𝛼 ∙ 𝑑𝑐

𝑖 − (𝛼 − 1) ∙ 𝑑𝑐
𝑖−1. (6.4) 

 

The variable 𝛼 in Equation (6.4) represents the delay in the system that the function will 

compensate, this parameter is tuned in accordance with the amount of delay that the system 

exhibits. The delay in milliseconds will be the product of 𝛼 and the time step 𝛿 . 

The phase lead compensator (PLC) is a compensator that takes on the same definition 

expressed in Equation (6.1), but calculates the weighted average of the command (𝑑𝑎𝑣𝑔_𝑐) and 

measured displacements (𝑑𝑎𝑣𝑔_𝑚) to calculate the slope for the extrapolation (Chen & Tsai, 2013), 

as given by: 

 𝑑𝑚
𝑖 = 𝑑𝑚

𝑖−1 +
1

𝛼 ∙ 𝛿 
(𝑑𝑎𝑣𝑔_𝑐

𝑖 − 𝑑𝑎𝑣𝑔_𝑚
𝑖−1 ) ∙ 𝛿  (6.5) 

where:  

 𝑑𝑎𝑣𝑔_𝑐
𝑖 =

𝑊1 ∙ 𝑑𝑐
𝑖 +𝑊2 ∙ 𝑑𝑐

𝑖−1 + 𝑑𝑐
𝑖−2

𝑊1 +𝑊2 + 1
 (6.6) 

and 

 𝑑𝑎𝑣𝑔_𝑚
𝑖 =

𝑊1 ∙ 𝑑𝑚
𝑖 +𝑊2 ∙ 𝑑𝑚

𝑖−1 + 𝑑𝑚
𝑖−2

𝑊1 +𝑊2 + 1
 (6.7) 

 

 In the previous expressions, 𝑑𝑚
𝑖−2  and 𝑑𝑐

𝑖−2  are the measured and commanded 

displacements at the (𝑖 − 2)th step. 𝑊1 and 𝑊2 are the averaging weights that need to be calibrated 

for each application. By substituting Equation (6.7) and (6.6) into Equation (6.5) and taking the 

discrete z-transform we obtain the following transfer function that relates the measured and the 

command displacements: 

 

𝑋𝑚(𝑧)

𝑋𝑐(𝑧)
=

𝑊1 ∙ 𝑧
2 +𝑊2 ∙ 𝑧 + 1

[𝑊1 + (𝑊1 +𝑊2 + 1)𝛼] ∙ 𝑧2 + [𝑊2 − (𝑊1 +𝑊2 + 1)𝛼] ∙ 𝑧 + 1
 

 

(6.8) 

 Applying the inverse model principle on Equation (6.8) leads to the following transfer 

function: 

 

𝑋𝑝(𝑧)

𝑋𝑐(𝑧)
=
[𝑊1 + (𝑊1 +𝑊2 + 1) ∙ 𝛼] ∙ 𝑧

2 + [𝑊2 − (𝑊1 +𝑊2 + 1) ∙ 𝛼] ∙ 𝑧 + 1

𝑊1 ∙ 𝑧2 +𝑊2 ∙ 𝑧 + 1
 

 

(6.9) 
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Figure 6.3. Base plate displacement due to the CAM ground motion and with transfer system 

delay. 

 

6.2 Experimental validation 

The PLC delay compensator was tested experimentally on a series of open loop tests with 

the bare plate with an input sine wave of 5 mm at 1 Hz with a duration of 30 seconds. 

 

Figure 6.4. Measured displacement with PLC delay compensation technique. 

 



 

 

77 

Figure 6.4 shows the positive effect of the delay compensator on the measured signal. The 

PLC compensated approximately 36 ms leaving the signal with only 3 ms of delay. As is clear 

from the figure, the compensation of the delay is not linear as the delay in the system increases 

with the compensation parameter 𝛼. The figure also exhibits an increase of amplitudes as the delay 

increase, this change is also evidenced in Figure 6.5 where the average slope of the curves starts 

to decrease as the compensation increases.  

 

 

Figure 6.5. Measured displacement vs command displacement with PLC delay compensation 

technique. 

 

A detrimental effect of the filter on the measured signal and on the system is shown in 

Figure 6.6, where the measured force shows a high amplitude force at the beginning of the 

measurement. These amplitudes and oscillations seem to increase with the compensation 

parameter 𝛼 and the high amplitude force signal seems to belong to a high-frequency range. After 

a low-pass filter with a cutoff frequency of 60 Hz was applied to the force signals, these high-

frequency and high-amplitude forces were removed, and the force time histories looked similar in 

magnitude relative to each other. These measurements suggests that the PLC was exacerbating the 

oil-column resonance of the system. The spectra for the force signals with the compensator show 

these frequencies with higher magnitudes than the ones for the uncompensated signal.  
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The PLC delay compensator computes the predicted displacement at the current time step 

from the averages of the command and predicted signal from the 𝑛𝑡ℎ , (𝑛 − 1)𝑡ℎ, and (𝑛 − 2)𝑡ℎ 

time steps, therefore the noise that the command signal could contain will be intensified and sent 

to the transfer system where it will resonate with the oil-column frequency of the system. If the 

input signal is not contaminated with any high-frequency noise, this identification will not happen. 

However, in an RTHS there is a high probability that the command displacement sent to the 

transfer system would be contaminated with high-frequency noise contained in the measured force 

that is feedback to the numerical substructure. In some cases, the numerical substructure would act 

as a low-pass filter and decrease the intensity of this high-frequency noise. However, this will 

depend on the ability of the numerical substructure to act as a low-pass filter. 

 

 

Figure 6.6. Measured force time history with PLC delay compensation technique. 

 

The IC technique was implemented on a series of sinusoidal open loop tests on the bare 

plate with an input sine wave of 10 mm at 1 Hz with a duration of 30 seconds. The compensator 

parameter, 𝛼, was incremented from 0 to 110 and a section of the time history of the measured 

displacement is shown in Figure 6.7. There is an incremental reduction on the delay between the 

measured and the command signal with a better delay compensation than the one achieved with 

the PLC. Figure 6.7 shows that the measured displacement signal is moving left as the parameter 

𝛼 increases. When comparing the commanded signal and the measured signals for 𝛼 = 0 and 𝛼 =
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110, it is observed that the compensation effectively reduces the delay between the command 

signal (black dashed line) and the measured signal (yellow line). The difference in amplitude 

between the uncompensated signal and the command displacement is less than the one between 

the compensated signal and the commanded signal, where the uncompensated signal maximum 

displacement was 10.16 mm and for the compensated signal was 10.38 mm. This result suggests 

that the IC technique had an influence on the amplitude of the command displacement. Without 

the delay compensator, the measured amplitude was more similar to the command signal but with 

a significant delay. However, with delay compensation, the difference between the command and 

measured signals amplitudes had a smaller increase, but now with a very small delay. 

 

 

Figure 6.7. Measured displacement with IC delay compensation technique. 

 

Figure 6.8 shows the measured displacement plotted against the command displacement. 

This figure shows the graph transitions form an oval shape to a linear relationship when the delay 

was compensated. It is also observed that the slope of the compensated signal is relatively smaller 

than the average slope of the uncompensated graph, this represents the slight amplitude change 

due to the implementation of the delay compensator. 

The spectra of the measured displacement signal confirm the increase in amplitude, and it 

also exhibits an amplification in the noise amplitude. However, the noise base level seems lower 

than the spectra for the uncompensated displacement signal. Harmonic distortion is still present 
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for both spectra, and particularly at lower frequencies where peaks appear every 1 Hz up to 20Hz 

and after 20 Hz, they appear every 10 Hz. These harmonic distortions are more prominent in the 

force spectra since it depends on the acceleration, the same can be say for the oil-column resonance.  

 

 

Figure 6.8. Measured displacement vs command displacement with IC delay compensation 

technique. 

 

 

Figure 6.9. Spectra of the measured displacement with and without delay compensation. 



 

 

81 

The force time history shown in Figure 6.10 still shows signs of high forces being 

developed at the beginning of the signal as seen in Figure 6.6, but with fewer oscillations.  

The IC technique showed a better compensation with a lesser effect on the measured 

displacement and force signals when compared to the PLC technique. Therefore the IC technique 

will be used to compensate for the delay in the transfer system.  

 

 

Figure 6.10. Measured force time history with IC delay compensation technique. 

 

6.3 PI controller tuning 

Since the difference between the command and measured displacements is small, the 

compensation was performed by tuning a proportional and integral tracking controller, a derivative 

function was excluded to minimize the intensification of the high-frequency noise from the force 

feedback loop.  

 The tuning process starts with the assembly of the reference case that is assumed as 

analogous to the ideal behavior of the isolated structure presented in Figure 2.2, when subjected to 

a ground motion. The numerical substructure model corresponds to the substructuring, and state 

space model described in Section 2.1.1. The physical substructure corresponds to the isolation 

layer represented by the Bouc-Wen model of first-order estimated for the isolator NPA1 in 

Section 5.2. The excitation sent to the system corresponds to the Campano Lucano 290ya (CAM) 
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ground motion with an intensity of 50%. A block diagram of the reference model is shown in 

Figure 6.11. Once the measured displacements for the upper and lower slabs, and the measured 

shear force at the level of the isolation layer have been recorded from the reference case, the RTHS 

case is implemented.  

 

Figure 6.11. Block diagram of the reference case for the base isolated structure presented Figure 

2.2. 

 

 

Figure 6.12. Block diagram of the RTHS case for the base isolated structure presented Figure 

2.2. 
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 The control and transfer systems are added to the block diagram in Figure 6.11, as shown 

in Figure 6.12. The transfer system block contains the model described in Section 4.2. The 

proportional and integral gains were tuned by running the simulation with different gain values 

and selecting the gains that produced the lowest RMSE between the measured and reference 

displacement signals. The result of this analysis is presented in Figure 6.13, and the final tuned 

values for the P-gain and I-gain are given in Table 6.1. During the tuning process, it was observed 

that the time delay decreased when the integral gain increased, thus, to help the tunning of the PI 

controller gains, the parameter alpha was set at 𝛼 = 30 which was enough to compensate for the 

time delay of the virtual transfer system which had a value of 86 milliseconds down to 0.5 

milliseconds. The base floor displacement tracking and measured shear force at the floor level are 

plotted in Figure 6.14 and Figure 6.15, respectively. The RMSE shows a good tracking was 

achieved with the tuned gains, as shown in Figure 6.14. The shear force is the most affected due 

to its sensitivity to high-frequency noise and the oil-column resonance influence that is amplified 

by the delay compensator. Figures 6.16 through 6.18 show the response of the virtual simulation 

for different ground motion input signals, the most evident characteristic shown in these figures is 

that the partitioned system seems to better adjust to the unpartitioned system for small 

displacement. However, at large displacements the RMSE between the two signal increases. 

 

 

Figure 6.13. Tuning process of the gains for the PI controller. 

  



 

 

84 

 

Table 6.1. Tuned values for the PI controller and delay compensator. 

𝑷 𝑰 𝜶 𝑹𝑴𝑺𝑬 𝑫𝒆𝒍𝒂𝒚 

𝟏. 𝟕𝟓 90 30 0.9% 0.5 𝑚𝑠 

 

 

Figure 6.14. Base floor displacement comparing the reference unpartitioned case and the 

controlled partitioned case. 

 

 

Figure 6.15. Shear force at the base floor level comparing the reference unpartitioned case and 

the controlled partitioned case. 
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Figure 6.16. Base floor displacement comparing the reference unpartitioned case and the 

controlled partitioned case for El Centro 1940 ground motion. 

 

 

Figure 6.17. Base floor displacement comparing the reference unpartitioned case and the 

controlled partitioned case for Kobe 2005 ground motion. 

 

 

Figure 6.18. Base floor displacement comparing the reference unpartitioned case and the 

controlled partitioned case for Morgan Hill 1984 ground motion. 
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 VIRTUAL MODEL OF THE RTHS SYSTEM 

A code package was created for all students and users interested in learning the applications 

of RTHS of a base-isolated structure with a nonlinear component as it is a rubber isolator. This 

package contains the models presented in this work as well as selected experimental data that was 

collected in the laboratory. This package offers the possibility for the user to implement different 

types of models either for the controller, transfer system, or to model the complex nonlinear 

behavior of the specimens. The numerical structure as presented in Section 2.1.1 could also be 

modified to include more stories and the Simulink model can include filters or introduce 

uncertainties into the simulation. 

This code package is prepared for new members in the RTHS community, or anyone 

interested to learn the first steps taken to structure an RTHS experiment and the different 

considerations that must be taken to account for common issues that may emerge during an RHTS. 

The following sections in this chapter describe the files and details of this code package. 

7.1 Simulation tool 

The code package consists of three folders that contain the materials and experimental data 

that are available to run the virtual model of the RTHS experiment, namely, 

‘01_Documentation’, ’02_SimulationTool’ and ’03_Data’. In this section, the contents of the 

provided materials are described below: 

• 01_GroundMotions: contains a set of five unscaled acceleration time history data 

available to run the simulation: El Centro 1940, Kobe 2005, Morgan Hill 1984, 

Campano Lucano 1980 (CAM), and a sine input signal for verification purposes.  

• 02_Models: contains the actuator-servo-hydraulics, shake plate, and specimen model 

parameters that will be used in the simulation. 

• 03_Results: contains the simulation results as .mat files. 

• SDOF_vRTHS.m: MATLAB script that computes the simulation and model 

parameters, numerical matrices, and the state-space matrices of the numerical 

substructure. 

• SDOF_vRTHS_SIMULINK.slx: Simulink file for the simulation. 
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• SDOF_vRTHS_REFERENCE.m: MATLAB script that computes the output signals 

corresponding to the reference model which will serve as a baseline for comparison. 

• SDOF_vRTHS_REFERENCE_SIMULINK.slx: Simulink file for the reference 

model. 

• SDOF_vRTHS_EXAMPLE_SIMULINK.slx: Simulink file for a controller 

implementation example. 

A series of constraints were adopted based on the physical limitations of the experimental 

hardware and software used in the laboratory and used in the Simulink model. 

 

The simulation tool, SDOF_vRTHS.m, is a MATLAB script that computes the transfer 

system, control, and specimen model parameters as well as the reference and numerical structure 

parameters needed for the simulation. This script calls the Simulink model, 

SDOF_vRTHS_SIMULINK.slx, to execute the simulation, which is shown in Figure 7.1. When 

the simulation is completed, the results are plotted on the main script and the evaluation criteria 

are calculated. 

The MATLAB script, SDOF_vRTHS_REFERENCE.m, creates the reference system by 

computing the superstructure and isolation layer parameters and calls the Simulink model, 

SDOF_vRTHS_REFERENCE_SIMULINK.slx, to run the simulation. This subroutine is run by 

the main script, SDOF_vRTHS.m, and the results are stored in the ‘03_Results’ folder. 

The Simulink model, SDOF_vRTHS_SIMULINK.slx, consists of a series of simulation 

blocks with a similar arrangement as the flow diagram presented in Figure 2.3, and described in 

Section 2.2.1. The ground acceleration block prepares the type and intensity of the input signal 

that is sent to the numerical substructure. The numerical substructure block contains the state-

space representation presented in Section 2.1.1, where the desired displacement of the base slab is 

computed. The desired displacement is sent to the control system block, where the controller 

calculates the command displacement. The servo-hydraulic system will receive this commanded 

displacement and, along with the actuator dynamics and the properties of the specimen, exert a 

force on the sliding table and a displacement will occur. The force and displacement signals will 

be measured by the corresponding transducers where sensor noise contamination can occur, 

represented by the sensors block, before feeding back to the numerical substructure block and the 

control system block, respectively. 
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An example of a controller implementation is provided in the file 

SDOF_vRTHS_EXAMPLE_SIMULINK.slx. The user can execute this model by setting the 

model_choice variable to 2. If such variable is left as 1 (default), then the uncontrolled case 

model, SDOF_vRTHS_SIMULINK.slx, is executed. Users can modify this model with their 

own controllers. 

 

 

Figure 7.1. Simulink file ‘SDOF_vRTHS_SIMULINK.slx’ that runs the simulation. 

7.2 Experimental data 

A set of experimental data is provided as MATLAB .mat files in the folder ‘03_Data’ for 

those users who aim to model the physical substructure or transfer system through an alternative 

approach.  

The isolators that were selected to be the focus of this code package are the NCA1 (Natural 

rubber with a Carbon fiber reinforcement) and the NCA1 (Natural rubber with a Polyester fiber 

reinforcement) isolators. The suffix A1 refers to a naming convention adopted for recordkeeping 

purposes. 

These signals were sent to the sliding table in an open loop without any control system. The 

‘03_Data’ folder includes: 

• 01_BarePlate: includes a set of BLWN, chirp, and sinusoidal signals for the sliding 

table without a specimen. 
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• 02_SpecimenNCA1: includes a set of ramp, step, sine, and shear test protocol 

(ASCE 7-16 SEC. 17.8.2.2-2.a) signals sent to the sliding table with the specimen 

NCA1 on it. 

• 03_SpecimenNPA1: contains the same type of signals as for ‘02_SpecimenNCA1’, 

but in this case for the specimen NPA1. 

The variable names in the .mat files as described as follows: 

• am: acceleration signal measured at the sliding table in 𝑚𝑚/𝑠2. 

• dd: desired displacement, 𝑥𝑛
(1)
, sent to the sliding table in 𝑚𝑚. 

• dm: measured displacement, 𝑥𝑚, of the sliding table in 𝑚𝑚. 

• fm: measured force, 𝑓𝑚, exerted by the actuator in 𝑁. 

• dt: simulation time increment in 𝑠𝑒𝑐. 

• t: time vector in 𝑠𝑒𝑐. 

7.3 Implementation constraints 

A series of constraints were adopted based on the physical limitations of the experimental 

hardware and software used in the laboratory and used in the Simulink model. 

1) The sampling frequency of the simulation, 𝑓𝑠, is 4096 Hz. 

2) The MATLAB script and the Simulink model were written in version R2022a. 

3) The time delay associated with the design of the controller should be of less than 

10 ms, or less than the critical time delay for it not to hinder the stability of the 

partition. 

4) The motion of the actuator throughout the virtual experiment should not exceed the 

physical capacities of the setup, i.e., the actuator should not surpass neither a 

maximum stroke of ±60 mm, a maximum force of 8800 N, nor a maximum velocity 

of 300 mm/s. 

5) The measurement noise is modeled as a normally distributed random number with a 

correlation time equal to the sampling period. The noise power (RMS) was estimated 

from experimental data.  
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 RTHS OF A BASE ISOLATED STRUCTURE 

This chapter is devoted to describing the implementation of the RTHS experiment in the 

laboratory. Section 8.1 describes the evaluation criteria adopted to assess the tracking accuracy 

and overall RTHS performance. Section 8.2 presents the results obtained from the simulation. 

8.1 Evaluation criteria for control 

Evaluation criteria are established in this section to assess the suitability and tracking control 

performance of the control system (Silva, Gomez, Maghareh, Dyke, & Spencer, 2020). The 

evaluation is determined by a set of seven indicators that compare the measured, desired, and 

reference displacements. In this study, the real displacement records of the full-scale specimen are 

not provided. Thus, the reference model described in Section 2.1 will serve as the reference case. 

This comparison will give insight into how a purely numerical-parametric model of a structure can 

compare to a real-time hybrid simulation. The first three evaluation indicators measure how well 

the control system tracks the desired response of the numerical substructure. The last four 

indicators measure how well the measured response compares to the reference model. 

The first evaluation indicator ( 𝐽1), determines the tracking time delay between the desired 

signal and the measured signal through cross-correlation by finding the amount of simulation time 

steps that the measured signal needs to be shifted to yield a maximum correlation between the two 

signals. A time step is the inverse of the sampling rate. The indicator is defined as: 

 𝐽1 = arg max𝑘 (∑𝑥𝑛
(1)(𝑖)𝑥𝑚(𝑖 − 𝑘)

𝑛

𝑖=1

) (8.1) 

 

It is implemented with the MATLAB function finddelay and reported in number of samples. 

The second evaluation indicator ( 𝐽2), is the normalized root mean square (RMS) of the 

tracking error. Its value represents the difference between the desired and measured displacements, 

and it is given by: 

 𝐽2 = √
∑ [𝑥𝑚(𝑖) − 𝑥𝑛

(1)(𝑖)]
2

𝑛
𝑖=1

∑ [𝑥𝑛
(1)(𝑖)]

2
𝑛
𝑖=1

∙ 100% (8.2) 
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The third indicator (  𝐽3 ), is the peak tracking error and its value is the maximum 

instantaneous error between the measured and desired displacements, and it was normalized by 

the maximum desired displacement. This indicator is defined as: 

 𝐽3 =
max|𝑥𝑚(𝑖) − 𝑥𝑛

(1)(𝑖)|

𝑥𝑑
(1)(𝑖)

∙ 100% (8.3) 

 

The fourth indicator ( 𝐽 ), is the normalized root mean square error between the measured 

displacement and the displacement of the reference model measured at the base slab and it is given 

by: 

 𝐽 = √
∑ [𝑥𝑚(𝑖) − 𝑥𝑟

(1)(𝑖)]
2

𝑛
𝑖=1

∑ [𝑥𝑟
(1)(𝑖)]

2
𝑛
𝑖=1

∙ 100% (8.4) 

 

The fifth indicator ( 𝐽 ), is the normalized peak tracking error found between the measured 

displacement and the displacement of the reference model at the base slab.  This indicator is given 

by: 

 𝐽 =
max|𝑥𝑚(𝑖) − 𝑥𝑟

(1)
(𝑖)|

𝑥𝑟
(1)(𝑖)

∙ 100% (8.5) 

 

The sixth indicator ( 𝐽 ), is the normalized root mean square error between the numerical 

displacement of the top slab obtained from the simulation and the top slab displacement of the 

reference model.  This indicator is defined as: 

 𝐽 = √
∑ [𝑥𝑛

(2)(𝑖) − 𝑥𝑟
(2)(𝑖)]

2
𝑛
𝑖=1

∑ [𝑥𝑟
(2)(𝑖)]

2
𝑛
𝑖=1

∙ 100% (8.6) 

 

The seventh indicator ( 𝐽 ), is the normalized peak tracking error between the numerical 

displacement of the top slab obtained from the simulation and the top slab displacement of the 

reference model measured.  This indicator is given by: 

 𝐽 =
max|𝑥𝑛

(2)(𝑖) − 𝑥𝑟
(2)(𝑖)|

𝑥𝑟
(2)(𝑖)

∙ 100% (8.7) 
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In the previous expressions, the superscripts [… ] 
(1)  and [… ] 

(2) indicate the DOF for the 

lower and upper floors, respectively. The subscripts [… ] 𝑛
   and [… ] 𝑟

  specify that the variable 

corresponds to a signal from the numerical or reference structure, and the subscript [… ] 𝑚
  indicate 

that the variable corresponds to a signal measured experimentally. 

These indicators use the response of the reference model presented in Figure 6.11 thus, 

intrinsic errors due to the underlying assumptions listed earlier are accounted for when analyzing 

the results. 

8.2 RTHS performance 

A real-time hybrid simulation was performed experimentally to test the response of the 

isolator under the loading it would experience in a large-scale test. The computational part of the 

simulation is formed by the Ground Motion, Numerical Substructure, and Controller blocks shown 

in the Simulink diagram in Figure 7.1. The transfer system is the experimental setup described in 

Section 2.4 and the experimental substructure is the isolator NPA1 which behavior is shown in 

Section 2.3. The acceleration time history sent to the system corresponds to the Campano Lucano 

290ya (CAM) ground motion with an intensity of 50%. The same Simulink model shown in Figure 

6.11 is used to compute a theoretical case where the numerical substructure and the behavior of 

the specimens are represented by the models developed in previous chapters of this work. 

Both the 1st and 5th-order Bouc-Wen models estimated for the isolator NCA1 were selected 

to serve as the physical substructure in the virtual RTHS. The experimental parameters for the 

controller were tuned heuristically prior to the tests due to the uncertainties and nonlinearities not 

accounted for in the models that were developed but taking the estimated values in Chapter 6 as a 

starting point. The experimentally updated parameters are shown in Table 8.1. 

 

Table 8.1. Experimentally updated gains for the PI controller and delay compensator. 

Parameter: 𝑷 𝑰 𝜶 

Value: 1.90 70 41 

Difference: 7.9% 22.2% 26.8% 

 

The displacement and shear force were measured at the base floor level and compared 

between the RTHS case and the theoretical case, the seven evaluation criteria are calculated 
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between these two models and are shown in the displacement time history are presented in Figure 

8.1. 

Table 8.2. Evaluation criteria for the experimental RTHS and a virtual RTHS with a Bouc-Wen 

model of 5th order (isolator NPA1). 

𝑱𝟏(𝒎𝒔)  𝑱𝟐(%) 𝑱𝟑(%) 𝑱𝟒(%) 𝑱𝟓(%) 𝑱𝟔(%) 𝑱𝟕(%) 

𝟎 1.08 1.27 43.76     40.05     43.94    39.14 

 

 

Figure 8.1. Measured base floor displacement comparison against a virtual RTHS with a Bouc-

Wen model of 5th order (isolator NPA1). 

 

Figure 8.1 shows a good tracking control between the measured and desired displacement 

signals with an RMSE of 1.08%, and this suggests that the control system performance is good. 

The experimental measurements show a greater difference in amplitude when it is compared 

against the RTHS experiment with the Bouc-Wen model of 5th order. This overestimation of the 

isolator response could indicate that the physical structure is stiffer, thus restricting the 

displacement of the base floor. After the 12-second mark, the virtual RTHS experiment shows 

higher displacements which were identified to be strongly related to the first mode of the structure. 

By applying the FFT to that portion of the signal, however, in the measured response from the 

experimental RTHS, these amplitudes are more related to the second mode of the structure. This 
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comparison suggest that the Bouc-Wen model drives the structure to respond mainly in its first 

vibrational mode, but in an RTHS there is certain influence from the second mode in the base floor 

displacement. 

 

     

Figure 8.2. Measured shear force comparison with a virtual RTHS with a Bouc-Wen model of 5th 

order (isolator NPA1). a) unfiltered measured signal (left), filtered measured signal (right). 

 

The experimental hysteretic behavior of the isolator is shown in Figure 8.2, where it is 

compared with the theoretical behavior given by the Bouc-Wen model of 5th order. The model is 

good at capturing the pinching effect around the origin that it is produced due to the softening 

(presented at around the +10 mm mark) and hardening (presented at around the +20 mm mark) of 

the isolator under small and large displacements, respectively. However, the model tends to 

overestimate the restoring forces at large displacements. 

The comparison between the experimental RTHS against the virtual RTHS with a 1st order 

Bouc-Wen model is shown in Figure 8.3 and Figure 8.4. The response of the virtual RTHS 

approximates better the experimental response with smaller displacements. However, the forces 

developed differ from the experimental around the origin since this model does not account for 

changes in the tangent stiffness of the specimen. However, as shown in Table 8.3, the evaluation 

criteria did not worsen significantly due to the use of a Bouc-Wen model that does not account for 

different types of nonlinearities. On the contrary it seems to improve the evaluation criteria. We 

speculate that under an RTHS, the isolator is behaving more with fewer changes in its tangent 

stiffness that a simpler Bouc-Wen model is enough to represent the behavior of the isolator and 

will better predict the restoring forces of the isolator at the maximum displacements. The better 
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prediction of the forces generated at maximum displacement from this model seems to influence 

in a greater way the overall accuracy of the virtual RTHS when compared to its experimental 

counterpart, and the variations in the tangent stiffness, when perceived as softening or hardening 

of the material, do not affect the behavior significantly when their effects are not significantly 

pronounced in the hysteretic response of the isolators as shown in Section 5.2. 

 

Table 8.3. Evaluation criteria for the experimental RTHS and a virtual RTHS with a Bouc-Wen 

model of 1st order (isolator NPA1). 

𝑱𝟏(𝒎𝒔)  𝑱𝟐(%) 𝑱𝟑(%) 𝑱𝟒(%) 𝑱𝟓(%) 𝑱𝟔(%) 𝑱𝟕(%) 

𝟎 1.08 1.27 33.37     32.75     33.57    32.44 

 

 

Figure 8.3. Measured base floor displacement comparison against a virtual RTHS with a Bouc-

Wen model of 1st order (isolator NPA1). 

 

The oil-column resonance distortion is strongly present in the measured force signal, similar 

to that seen for the virtual RTHS shown in Figure 6.15. This distortion could affect the response 

of the numerical substructure since it is part of the feedback signal. Figure 8.2a shows that the 

frequency content of the experimental displacement sent to the transfer system is contaminated 

with noise that came from the feedback-restoring force and was not filtered out by the numerical 
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substructure. Delay compensators such as the PLC or a derivative action from a PID controller can 

magnify this distortion, causing the sliding table to vibrate close to its resonant frequency, which 

could be detrimental to the integrity of the experimental setup and the simulation. 

 

         

Figure 8.4. Measured shear force comparison with a virtual RTHS with a Bouc-Wen model of 1st 

order (isolator NPA1). a) unfiltered measured signal (left), filtered measured signal (right). 

 

By applying a low-pass filter with a cutoff frequency of 25 Hz to the force signal, the effect 

of this distortion is removed and can be better compared with the theoretical response. Figure 8.2b 

shows the filtered measured force signal. The Bouc-Wen model can capture the force asymmetry 

and match the group of loops at the beginning of the signal and the loops that branched out upwards 

for the larger amplitudes.  

A series of RTHS were performed to assess the delay compensator performance with an 

increase in the compensation factor 𝛼. Figure 8.5 shows that the base floor displacements of the 

structure decreased when the compensation factor increased. It is worth noting that the feedback 

force was amplified 2.5 times for these simulations. That way the response of the system would 

not surpass the stroke of the actuator. 

By plotting the uncompensated signal against the compensated signal, it is better observed 

that there is a decrease of 54.35% in the maximum measured displacement. The commanded 

displacements plotted against the measured displacements show the graph to go from a nonlinear 

to a linear dependency between these signals and the amplitude decrease. 
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Figure 8.5. Effect of delay compensation in the response of the system. 

 

     

Figure 8.6. Comparison between the compensated signal and the compensated signal. A) time 

history (left) and b) measured versus command displacement (right). 

 

A closer look at the compensated signal in Figure 8.6b reveals that there are some sections 

in the graph where there seems to exist a small delay, which can be attributed to the nonlinearities 

of the physical specimen that introduces a varying delay during the experimental simulation which 

the inverse compensator cannot compensate. The fitting of a linear function to the compensated 
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graph reveals that the amplitude tracking by the transfer system is not significantly distorted due 

to the compensator. 

The comparison between the full-scale response, the theoretical 1st order Bouc-Wen of 

model response, and the RTHS experimental response are shown in Figure 8.7, where the RMSE 

error is lower for the experimental response than for the theoretical response. The theoretical 

response, as discussed before, possesses a strong influence from the first mode of the structure 

which dominates throughout the signal, as it is shown in Figure 8.8 where the most prominent peak 

corresponds to the first mode, while the full-scale and the RTHS responses present a strong 

presence of the first and mode during the large displacements of the structure and a small 

contribution of the second structural model in the last portion of the signal at around 6.8 Hz, as 

shown in Figure 8.8b. The experimental response simulates the behavior of the full-scale response, 

especially for small displacements. At large displacements, it underestimates the full-scale 

response. 
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Figure 8.7. Measured base level displacement between the full scale, theoretical response, and 

experimental responses (isolator NPA1). 

 

 

     

Figure 8.8. Displacement spectra for a) the entire response (left) and b) the last 4 second of the 

response (right) (isolator NPA1). 
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 CONCLUSIONS AND FUTURE WORK 

A summary of major findings, contributions, and conclusions from this study are 

summarized in Sections 9.1 through 9.3, respectively. Recommendations and ideas suggested for 

future work are presented in Sections 9.4 and 9.5, respectively.  

9.1 Summary of major findings 

A testing instrument was designed and constructed to apply a uniaxial compressive force up 

to 22kN and a shear force of 8kN simultaneously to a test specimen. Over 20 different unbonded 

fiber-reinforced elastomeric isolators have been tested to obtain their effective horizontal stiffness 

and their effective damping ratio.  

Two Bouc-Wen models were implemented to model the behavior of the UFREIs, one model 

includes a linear relationship with the lateral displacement (stiffness relationship), and the second 

model includes a fifth-order polynomial relationship. The curve fitting of both models shows that 

for the shear tests, the fifth-order model better fits the behavior of the UFREI made of natural 

rubber, polyester, and carbon fiber since it can capture the change in tangent stiffness because of 

the softening and hardening effects. Isolators made of recycled rubber were found to be stiffer and 

more porous, making them susceptible to damage during testing. Therefore, they present other 

nonlinear behaviors which could not be captured accurately by either of the two models; we 

speculate that this difference in behavior stems from differences in their composition and 

manufacturing process when compared to the specimens with natural rubber. 

A series of tests were performed on the transfer system without a specimen to assess its 

frequency content and the distortions that it could introduce in the measured signals. For lower 

frequency ranges, up to 40 Hz, there does not seem to be any mode that can be attributed to the 

motion of the frame. The major sources of signal distortion, however, were identified as coming 

from the servo-hydraulic system. Common types of distortions correspond to the amplitude and 

phase decrease with the frequency that affects the measured displacements by modifying its 

amplitude and introducing a time delay. Transfer systems have inherent dynamics and delays, thus 

taking time between the moment the numerical displacement is sent to the transfer system for it to 

execute this displacement. With a time delay of approximately 25 ms for a 1 Hz signal, the time 
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delay was the main cause of distortion from the transfer system in the measured displacements for 

the uncontrolled system. 

The next most significant of these distortions corresponds to the oil-column resonance, 

which occurs when the oil inside the actuator acts as a spring and, along with the sliding table, 

forms a spring-mass system, the frequency of this system is 71 Hz and is present in the measured 

displacements accelerations and forces. The next type of distortion corresponds to harmonic peaks 

found in the Fourier spectra of the measured signals. These distortions can be attributed to the 

nonlinearities present in the servo-hydraulic system, such as a nonlinear flow-pressure relationship 

or a flow-gain nonlinearity. 

To study the dynamics of the transfer system, a mechanics-based model was developed to 

understand better the distortions that the sliding table can introduce to the measured signals. The 

model accounts for the inertial forces generated because of the acceleration of the mass of the plate 

and dissipative forces, which were modeled as a viscous damping component and a Coulomb 

friction component associated with the railing system. The model seems to match well for a 

frequency range up to 15 Hz but fails to model the dissipative forces accurately at higher 

frequencies since this force does not seem to hold a linear relationship with the velocity at higher 

frequencies. 

9.2 Contributions 

A numerical substructure, the transfer system model, and selected Bouc-Wen models were 

assembled into a virtual model of the RTHS system, which was then used to design a control 

system that could compensate for the distortions that the dynamics of the transfer system 

introduced to the measured signals. The control system is comprised of a delay compensator, 

which computes the predicted displacement as a linear extrapolation between the previous and 

current desired displacements, and a Proportional-Integral controller, which accounts for the 

amplitude difference between the measured and the desired displacements.  

The virtual model of the RTHS is part of a code package which was created for users 

interested in learning the applications of RTHS of a base-isolated structure with a nonlinear 

component as it is a rubber isolator. This package contains the models presented in this work as 

well as selected experimental data that was collected in the laboratory.  
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The control system was deployed at the IISL in an RTHS experiment where it presented a 

good performance at reducing the delay and amplitude differences. However, it increased the effect 

of the oil-column resonance in the measured signals. The simulation seems to capture the behavior 

of the isolated structure for small displacements. However, it tends to underestimate the 

displacement of the full-scale specimen for large displacements.  

9.3 Conclusions 

The hysteretic response of the UFREIs made of natural rubber and reinforced with either 

carbon or polyester fibers presents three major types of nonlinearities, namely: softening due to 

the loss in contact at the start of the deformation, hardening effect due to the increase in contact 

area because of the rollover of the isolator at large deformations, and asymmetry in the measured 

force. Isolators made of recycled rubber present wider hysteresis loops because of the loss of 

integrity of the specimen during the test. This loss of integrity is attributed to their higher rigidity 

attained from their brittle rubber matrix composition and manufacturing processes which do not 

allow for the isolator to endure large deformations. 

A Bouc-Wen model with a 5th-order polynomial relationship with the lateral displacement 

can capture the hysteretic behavior of UFREIs made of natural rubber and reinforced with either 

carbon or polyester fibers. The 3rd and 5th-order terms in the model help to account for the 

softening and hardening behaviors. The 2nd and 4th-order terms help account for the force 

asymmetry observed in the hysteretic loops of the UFREIs. 

Large transfer systems used to perform large-scale tests are more likely to possess an oil-

column resonant frequency in the lower range of frequencies than those designed for high-velocity 

rates and with lighter masses attached. Proper online filtering procedures must be selected to 

remove distortions from the measured signals, ensure that the test specimen modal information is 

preserved, and not introduce any additional delay into the system. 

Transfer systems with a delay for low-frequency input signals of about 30 ms could drive 

the system to develop high displacement that could make the simulation unstable. A good 

understanding of the stability of the partition for delays in the restoring forces coming from the 

experimental part is essential to avoid compromising the integrity of the test. Depending on the 

critical time delay identified in a stability analysis, the time delay could render the system unstable 

or drive the isolated system to develop amplitudes beyond the capabilities of the transfer system. 
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For transfer systems that present a low RMSE between the measured and desired 

displacements (above 90%) and a significant delay (above 25 ms) for a low-frequency range of 

input signals, a PI controller should suffice for proper amplitude tracking through the frequency 

range. A delay compensator can effectively decrease the delay in the simulation; however, it can 

take a toll on the displacement signal amplitude by reducing it if the value of the compensation 

parameter is overestimated. Thus, a well-tuned delay compensator should be part of the control 

system that could appropriately predict the displacements in the system without intensifying high-

frequency noise.  

An RTHS is an efficient, cost-effective, and versatile approach to testing the behavior of a 

base-isolated structure where the isolation system is comprised of UFREIs. These types of 

simulations can capture dynamics and rate effects under similar loads that it would experience in 

a full-scale test that the approximation made by a virtual system with a Bouc-Wen model cannot 

capture. 

In the virtual RTHS the Bouc-Wen with a first-order stiffness parameter seems to 

approximate the behavior of the isolator in a similar manner than the fifth-order model, which 

shows that even though the isolator behavior in a shear test presents different nonlinearities, under 

the RTHS performed, its hysteretic behavior presented fewer variations in the tangent stiffness, 

thus being able to be simulated by a simpler Bouc-Wen model.  

9.4 Recommendations 

The Bouc-Wen model with a 5th order relationship is recommended for studying the 

hysteretic force-displacement relationship of a UFREI made of rubber and carbon and polyester 

fiber. Special attention needs to be given to the proper preparation of the signals used for the 

parameter identification so that the nonlinearities in the force response are captured by the model. 

It is recommended that the partitioned system be subjected to a stability analysis to assess 

its stability restrictions and to ensure that it is well-conditioned. The critical time delay is an 

important parameter to compute from this analysis since it will define whether the system will 

remain stable or not during the simulation. A from such analysis can be also obtained the maximum 

mass, damping and stiffness variations that the numerical substructure can resist while remaining 

stable. Therefore, an optimum combination from these parameters could be obtained and 

implemented to ensure a stable partition. 
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A modal analysis is recommended to be carried out for any transfer system that is selected 

for an RTHS before designing the simulation to identify the causes of distortions that it could 

introduce to the measured signals and that could have a damaging effect on the transfer system 

and on the simulation. An analysis of the hysteresis loops is a useful procedure that could give a 

better understanding of the behavior of the transfer system especially if its variation with frequency 

is also included in the analysis. 

In literature there are multiple types of delay compensators, thus a proper selection of a delay 

compensator is recommended such that it can adjust well to the other parts of the control system 

and to the transfer system. Some of these compensators rely on past inputs or measured signal thus 

they could exacerbate the high-frequency noise that these signals can include. 

Before executing an RTHS it is recommended to try different models similar to the isolated 

system studied here but with small modifications that would make it inherently stable. These 

modifications should ensure to drive the system to develop displacements and forces with 

magnitudes that remain within the physical and operational capabilities of the transfer system. 

These systems can subsequently be modified to transition to the isolated system studied here in an 

RTHS. This is a slower implementation process, but that can ensure that the integrity of the transfer 

system will be maintained and provide a good understanding of how changes in the model alters 

its dynamic behavior. 

9.5 Ideas suggested for future work 

Regarding the numerical substructure, many other types of configurations can be tested in 

this RTHS facility, such as adding more stories, or including rotational dynamics or mass 

eccentricities in the building. Other devices such as MR dampers or actuators could be included in 

the RTHS along with the isolators to study different type of seismic protection techniques. 

A more detailed mechanics model of the transfer system could be designed to account for 

the nonlinear behavior of the dissipative forces at higher frequencies or to account for uncertainties 

in the restoring forces coming from the sliding table. 

Different methods to model the isolators could be implemented, such as Bouc-Wen models 

that account for softening, hardening, stiffness degrading, and force asymmetry with different 

functions aside from the polynomial function presented in this work. Machine learning and deep 

learning techniques could be applied to model the hysteretic behavior of the isolators learning from 
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different shear tests or RTHS. Uncertainty identification and quantification could be explored to 

account for the small differences in behavior of the isolators for the same test.  

The transfer system can be modeled by including more complex servo-hydraulics dynamics, 

thus increasing the order of the plant's transfer function.  

Different control techniques could also be implemented to diminish the effect of the oil-

column resonance and harmonic distortion, such as active harmonic cancelation or filtering 

techniques. More complex controllers, such as a Linear-Quadratic Gaussian controller, and 

adaptive controllers, could be implemented to support other applications; Neural network 

techniques are another option for a controller, which could be applied to control the RTHS 

experiment by running multiple simulations in the virtual model of the RTHS before deploying 

them experimentally. Delay compensators that could account for the nonlinear behavior in the 

system could be implemented to best suit other types of controllers, such as active delay 

compensation or polynomial extrapolation techniques. 
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